The Mystery of Missing Heritability: Genetic interactions create phantom heritability Supplementary Information # Contents | Li | st of | Figures | 4 | |---------------|-------|---|----| | Li | st of | Tables | ţ | | \mathbf{Li} | st of | Symbols | (| | 1 | Cal | culating the top-down heritability h_{pop}^2 from population data | , | | | 1.1 | Explained, missing and phantom heritability | - | | | 1.2 | Partitioning of phenotypic variance | , | | | 1.3 | Genetic interactions confound heritability estimates: The ACE model $\ \ldots \ \ldots$ | 8 | | | 1.4 | Shared environment confounds heritability estimates: The ADE model | , | | | 1.5 | Heritability estimation by parent-offspring regression | 1(| | | 1.6 | Summary: Problems of different heritability estimates | 10 | | | 1.7 | Importance of clarity about definitions of heritability | 1. | | | 1.8 | Problems with narrow and broad sense heritability estimates | 1 | | 2 | The | ${f e}$ liability-threshold $({f A}_{\Delta})$ model | 13 | | | 2.1 | Definition | 13 | | | 2.2 | Risk to relatives | 13 | | | 2.3 | Fitting an A_{Δ} model from population data | 14 | | | 2.4 | Effect size and heritability explained for a single locus | 14 | | 3 | The | e limiting pathway (LP) model for quantitative traits | 16 | | | 3.1 | Definition | 16 | | | 3.2 | Calculating the true heritability, h_{all}^2 | 16 | | | 3.3 | Calculating the apparent heritability, h_{pop}^2 | 1 | | | 3.4 | Phantom heritability approaches 100% as k increases | 19 | | 4 | The | e limiting pathway ($ ext{LP}_{\Delta}$) model for disease traits | 20 | | | 4.1 | Definition | 20 | | | 4.2 | Calculating the risk to relatives of affected individuals | 20 | | | 4.3 | Calculating the true heritability, h_{all}^2 , and apparent heritability, h_{pop}^2 | 2 | | | 4.4 | Generalized multiple pathways models | 2 | | 5 | Nui | merical properties of LP models: | | | | | ditional formulas mis-estimate heritability | 2 | | | 5.1 | Epidemiological data for quantitative traits | 25 | | | 5.2 | Epidemiological data for disease traits | 2! | | | 5.3 | Data in Fig. 1a: Phantom heritability for quantitative traits | 26 | | | 5.4 | Data in Fig. 1b: Phantom heritability for disease traits | 26 | | | 5.5 | Alternative heritability estimates | 26 | |-----------|----------------|---|-----------| | 6 | Cro | hn's disease, schizophrenia and other traits | 28 | | | 6.1 | Crohn's disease | 28 | | | 6.2 | Schizophrenia | 29 | | | 6.3 | Differences among traits | 30 | | 7 | Det | ecting epistasis among variants | 32 | | | 7.1 | Experimental evidence for epistasis in humans | 32 | | | 7.2 | Tests for detecting associations and their power | 32 | | | 7.3 | Detecting the marginal effect of each SNP | 33 | | | 7.4 | Detecting interaction between a pair of SNPs | 34 | | | 7.5 | Detecting interaction between two pathways | 35 | | 8 | Con | sistent estimator $h^2_{\mathbf{slope}(\kappa_0)}$: Proof of Theorem 1 | 37 | | | 8.1 | Heritability on the observed scale | 37 | | | 8.2 | Ascertainment bias in Case-Control studies | 41 | | | 8.3 | Heritability on a hidden liability scale | 41 | | 9 | App | plying the theorem in practice | 42 | | | 9.1 | Heuristic formula for variance of slope | 42 | | | 9.2 | Simulation | 43 | | 10 | Esti | mator based on slope of variation in IBD sharing among sibs | 44 | | 11 | \mathbf{Arg} | uments advanced in support of additivity | 45 | | | 11.1 | Allele frequencies | 45 | | | 11.2 | Breeder's equation | 46 | | | 11.3 | Observed sibling correlations | 47 | | 12 | Sup | plementary code | 48 | | Re | efere | nces | 49 | | 13 | Sup | plementary figures | 52 | | 14 | Sup | plementary tables | 63 | # List of Figures | 1 | Distribution of phenotype for LP traits | |----|--| | 2 | Phenotypic similarity for relatives for the LP traits | | 3 | Analysis of LP models for quantitative traits | | 4 | Analysis of LP models for disease traits | | 5 | Further analysis of LP model for disease traits | | 6 | Heritability for generalized LP models | | 7 | Additive vs. non-additive models for schizophrenia | | 8 | Sample sizes needed to detect loci and detect interactions | | 9 | Epistatic variance in two-locus model | | 10 | Parent-offspring phenotypic correlation | | 11 | Response to selection and parent-offspring phenotypic correlation 62 | # List of Tables | 1 | Model parameters for generalized LP model | 22 | |---|---|----| | 2 | Epidemiological parameters for disease traits | 25 | | 3 | Phantom heritability for Crohn's disease for different epidemiological parameters | 28 | | 4 | Risk for relatives for Crohn's disease for different levels of shared environment | 29 | | 5 | Epidemiological data and model fit for Schizophrenia | 30 | | 6 | Epidemiological parameters for quantitative traits | 63 | | 7 | Model parameters for quantitative traits | 66 | | 8 | Model parameters for disease traits | 71 | | 9 | Phantom heritability for Crohn's disease | 82 | # List of Symbols | $\pi_{explained}$ | Proportion of heritability explained | 7 | |----------------------------------|--|----| | h_{known}^2 | Narrow-sense heritability explained by known variants | 7 | | $\pi_{phantom}$ | Phantom heritability | 7 | | h_{all}^2 | True (narrow-sense) heritability | 7 | | h_{pop}^2 | Apparent heritability, inferred from population data | 7 | | β_i | Additive effect size of the i-th locus | 7 | | r_R | Phenotypic correlation for relatives of degree R | 7 | | Ψ | A genetic architecture | 7 | | H^2 | Broad-sense heritability | 11 | | A_{Δ} | The liability-threshold model | 13 | | c_R | Fraction of environmental variance shared by relatives of degree R | 13 | | μ | Disease prevalence | 13 | | λ_R | Relative risk for disesae for relatives of degree R | 13 | | IBD | Identity-By-Descent | 13 | | κ_R | Kinship coefficient for relatives of degree R | 13 | | f_i | Minor allele frequency of the i-th locus | 14 | | η_i | Genetic relative risk of the i-th locus | 14 | | LP | The limiting pathway model for quantitative traits | 16 | | $h_{pathway}^2$ | Heritability in a given pathway | 16 | | V_c | Proportion of variance due to common environment | 16 | | LP_{Δ} | The limiting pathway model for disease | 20 | | NCP | Non-Centrality-Parameter | 33 | | $h_{\mathrm{slope}(\kappa_0)}^2$ | Heritability estimator from IBD sharing | 37 | | | | | # 1 Calculating the top-down heritability h_{pop}^2 from population data #### 1.1 Explained, missing and phantom heritability The proportion of heritability explained by a set of loci is $\pi_{explained} = \frac{h_{known}^2}{h_{pop}^2}$. The missing heritability is $\pi_{missing} = 1 - \pi_{explained} = 1 - \frac{h_{known}^2}{h_{pop}^2}$. The phantom heritability is the missing heritability remaining after all causal loci were discovered, $\pi_{phantom} = 1 - \frac{h_{all}^2}{h_{pop}^2}$. The values h_{all}^2 and h_{known}^2 are typically obtained by summing the individual variances explained over all causal loci, and all known loci, respectively (see main text). The value h_{pop}^2 is typically obtained by measuring phenotypic similarity among family members, as described next in Sections 1.2 - 1.5. Throughout the paper, we are interested in the issue of consistency, that is, whether or not the population estimates h_{pop}^2 converge asymptotically to the heritability h_{all}^2 as the sample size grows. We therefore focus on the actual values of the quantities h_{pop}^2 , h_{known}^2 and h_{all}^2 . We are not interested here in issues of precision - that is, sampling variation in estimates due to sample size. In focusing on consistency, we can assume that we know the true population values of the various parameters such as genetic effect size (for example, β_i , defined as the additive effect of the i-th variant to the trait) or phenotypic similarity (for example, r_R , defined as the phenotypic correlation coefficient between two individuals of familial relationship R). #### 1.2 Partitioning of phenotypic variance For a general genetic architecture $\Psi(G, E)$, and assuming no GxE interactions, the genetic architecture is written as, $$Z = \Psi(G, E) = \Psi'(g_1, ..., g_n) + \epsilon$$ $$\tag{1.1}$$ where Ψ' is a function only of genotypes, giving the genotypic value $\Psi'(g_1,..,g_n)$, i.e. the average level of the phenotype for individuals with genotype vector $(g_1,..,g_n)$. Here Z is the value of the trait. It is a random variable, with a distribution depending both on the distribution of noise ϵ , and a distribution of the genotypes $(g_1,..,g_n)$ in the population. Here and throughout, we will use upper-case (e.g. Z) to denote random variables, and lower-case (e.g. z) to denote their realized values. The quantity g_i typically denotes the diploid genotype at the i-th variant site, which is 0, 1 or 2 according to the number of variant alleles. (Alternatively we can choose to distinguish between the maternally- and paternally-inherited sites, in which case the g_i are binary variables.) ϵ is an (unobserved) environmental variable contributing to the trait's value. Here and throughout, we assume that the trait is normalized to have mean zero and variance one, and that the environmental component ϵ has a Gaussian distribution, $\epsilon \sim N(0, V_e)$. The variance in the trait can be partitioned as (see e.g. ref., 1 pages 85-87), $$V_P = V_G + V_e = \sum_{i,j=0}^{n} V_{A^i D^j} + V_e$$ (1.2) Here $V_{A^iD^j}$ represents the interaction of additive variance of order i and
dominance variance of order j, and we use the convention $V_{A^0D^0} = V_{A^nD^n} = 0$. V_e is the environmental variance. When considering the variance decomposition for two individuals, the environmental variable ϵ is further partitioned into a shared part, ϵ_c , with variance V_c , and a unique part, ϵ_u , with variance V_u (such that $V_c + V_u = V_e$). This partitioning varies based on the degree of shared environment between the two individuals, which we assume is determined by the familial relationship. We therefore write, for example, $V_{c,sib}$, $V_{c,cousin}$ to represent the level of shared environment for siblings, cousins etc. #### 1.3 Genetic interactions confound heritability estimates: The ACE model This section and the following two sections describe three common approaches for estimating the narrow-sense heritability h_{all}^2 from population data. All three estimators are based on the notion of comparing phenotypic similarity of close family members. The similarity is measured by phenotypic correlation, $r_R = corr(Z, Z_R)$, where Z is the value of the trait for an individual and Z_R is the value for a relative with familial relationship R. According to eq. (1.2), the phenotypic variance depends on genetic interactions of different levels and different environmental variance components. Ideally, an estimator of the heritability from population data will consider all the different variance components, and will converge, as sample size increases, to the true heritability. However, the problem is that such estimators are typically based on only two or a few more familial relations (for example, twins, siblings, parent-offspring) and there is no way to estimate the different variance components from so few observations. The "solution" has been to introduce simplifying assumptions. We next examine the effect of such simplifying assumptions on heritability estimates. In twin studies, one observes two variables, the monozygotic twin correlation r_{MZ} , and the dizygotic twin correlation r_{DZ} . The ACED model is often used for twin studies. It partitions the variance of a trait to four components: Additive, Common environment, unique Environment and Dominance (see e.g.²). Since all variance components should sum to one, the model has 3 free parameters - Additive, Dominance and Common environmental variances. Based on the two observed values r_{MZ} , r_{DZ} , there is no way to estimate these 3 parameters of the ACED model from the data. One must therefore give up one component of the model. The most widely used choice is the ACE model described in the main text, where one completely neglects interactions (both Dominance and epistasis). To illustrate the effect of interactions on the ACE model, we give the formulas for monozygotic and dizygotic twin correlations obtained from eq. (1.2), $$r_{MZ} = V_{c,MZ} + \sum_{i,j=0}^{n} V_{A^{i}D^{j}}$$ (1.3) $$r_{DZ} = V_{c,DZ} + \sum_{i,j=0}^{n} 2^{-(i+2j)} V_{A^i D^j}$$ (1.4) The formula for calculating h_{pop}^2 in the ACE model is, $$h_{pop}^2(ACE) = 2(r_{MZ} - r_{DZ})$$ (1.5) The estimator attempts to eliminate the effect of shared environment by subtracting r_{DZ} from r_{MZ} . (N.B. the estimator makes the implicit assumption that shared environment is identical for MZ and DZ twins $(V_{c,MZ} = V_{c,DZ})$. If there are differences in the shared environment due to in-utero or subsequent effects $(V_{c,MZ} > V_{c,DZ})$, then the ACE model will not fully eliminate the effect of shared environment.) The estimator (obtained from eqs. (1.3, 1.4)) can be partitioned as, $$h_{pop}^{2}(ACE) = \sum_{i,j=0}^{n} (1 - 2^{-(i+2j)}) V_{A^{i}D^{j}} = h_{all}^{2} + \sum_{(i,j)\neq(1,0)} (1 - 2^{-(i+2j)}) V_{A^{i}D^{j}} = h_{all}^{2} + W(ACE)$$ $$(1.6)$$ where we have used $h_{all}^2 = V_A$ since we assume that the overall phenotypic variance is $V_p = 1$. The term $W = \sum_{(i,j)\neq(0,1)} (1-2^{-(i+2j)}) V_{A^iD^j}$ is the error in estimating h_{all}^2 . It is always nonnegative, and is zero only when the trait follows a strictly additive model. Otherwise, we have W > 0 and the heritability estimate is biased upwards, $h_{pop}^2 > h_{all}^2$. #### 1.4 Shared environment confounds heritability estimates: The ADE model Alternatively, the ADE model assumes a dominance term (which allows a partial correction for genetic interactions) but completely ignores shared environment among relatives. In the ADE model, the formula for h_{pop}^2 is $$h_{pop}^2(ADE) = 4r_{DZ} - r_{MZ}$$ $$\tag{1.7}$$ This gives, $$h_{pop}^{2}(ADE) = \sum_{i,j=0}^{n} (4 \times 2^{-(i+2j)} - 1)V_{A^{i}D^{j}} + 3V_{c,sib} =$$ $$h_{all}^{2} + \left[\sum_{(i,j)\neq\{(1,0),(0,1),(2,0)\}} -(1 - 2^{2-(i+2j)})V_{A^{i}D^{j}} + 3V_{c,sib} \right] \equiv$$ $$h_{all}^{2} + W(ADE)$$ $$(1.8)$$ The term W(ADE) represents our error in estimating the heritability. It is composed of two parts. The first (summation) term is composed of genetic interactions, and is always non-positive. The ADE estimator eliminates V_D and V_{AA} , but higher order interactions are still present and will lead to an under-estimate (as opposed to over-estimate) of the heritability when genetic interactions exist. More disturbingly, the ADE estimator completely ignores shared environment and thus gives rise to the second part, $3V_{c,sib}$; it is always non-negative and will inflate the heritability estimation when shared environment is present. This can yield substantial phantom heritability. #### 1.5 Heritability estimation by parent-offspring regression Another estimator for the heritability is obtained by regression of offspring phenotype on the midparents phenotype, $$h_{pop}^2(PO) = \sqrt{2}r_{PO}$$ (1.9) that is, one regresses the phenotype of the offspring Z_{off} on the average phenotype of the two parents, $\frac{Z_p + Z_m}{2}$ to get $r_{PO} = corr(Z_{off}, \frac{Z_p + Z_m}{2})$. This estimate goes back to Galton,³ who coined the expression "regression toward the mean", which simply means that the offspring value, Z_{off} , is on average closer to the population mean than the mid-parent value $\frac{Z_p + Z_m}{2}$ - which is mathematically equivalent to having $r_{PO} < 1$. The correlation coefficient r_{PO} measures the strength of the regression to the mean, which in turn is a measure of the role of genetics in the trait, i.e. heritability. The variance partitioning for this estimator is as follows, $$h_{pop}^{2}(PO) = V_{c,po} + \sum_{i=0}^{n} 2^{1-i}V_{A^{i}} = h_{all}^{2} + V_{c,po} + \sum_{i=1}^{n} 2^{1-i}V_{A^{i}} = h_{all}^{2} + W(PO)$$ (1.10) where $V_{c,po}$ is the expected shared environment between offspring and their parents (which may be different than $V_{c,sib}$ used previously). The term $W(PO) = V_{c,po} + \sum_{i=1}^{n} 2^{1-i}V_{A^i}$ represents our error for this estimator. An advantage of using parent-offspring regression is that dominance effects and their interactions completely vanish. However, the estimator may be still greatly inflated by both shared environment components between parents and their offspring $V_{c,po}$, and genetic interactions between different loci (additive-by-additive interactions), V_{A^i} for i > 1. Again, under an additive model with no shared environment, this is a consistent estimator for the true heritability h_{all}^2 . Under a general model, we get an over-estimation due to genetic interactions (albeit a different over-estimation than the one obtained by the ACE model), and also an over-estimation due to shared environment between parents and their offspring. #### 1.6 Summary: Problems of different heritability estimates The estimator $h_{pop}^2(ACE)$ yields an overestimate, by failing to account for genetic interactions. The estimator $h_{pop}^2(ADE)$ may yield an underestimate (by failing to account for genetic interactions) or an overestimate (by failing to account for shared environment). The estimator $h_{pop}^2(PO)$ yields an overestimate (by failing to account for additive x additive interactions and by failing to account for shared environment). None of the widely used estimators are immune to overestimation for a general architecture Ψ . Each estimator may inflate the apparent heritability in different circumstances. In Sections 3 and 4, we compute the values of the three heritability estimators under various (non-additive) genetic architectures. #### 1.7 Importance of clarity about definitions of heritability Authors often use the term "heritability" and the symbol h^2 to refer to both the true heritability h^2_{all} and the apparent heritability h^2_{pop} , despite the fact that these quantities need not be equal. For example, Falconer and MacKay² (page 154) state that "There are similarly two definitions of additive variance, which is the variance of breeding values. The theoretical one, described in the previous chapter, is derived by summation over loci considered separately, and it excludes interaction variances. The practical one is that which determines, and is estimated from, covariances of relatives, and it contains fractions of the additive x additive interaction variance; for example, twice the offspring-parent covariance estimates $V_A + 0.5V_{AxA} + \text{smaller}$ fractions of the higher order interactions, where V_A is the theoretically defined additive variance. The only way of estimating the additive variance is from covariances of relatives, and it is this that is needed for predictions, such as responses to selection. So when we speak of "additive variance" and write " V_A " it is best to regard these as referring to the practical definition with its included fractions of interaction variances. In reality, however, the difference between the two definitions is probably seldom more than trivial compared with the errors of estimation." The text illustrates two important issues: - i. The notion that a single term "additive variance" has two
definitions that are not equivalent is unacceptable. It gives rise to considerable potential for confusion, including conflating estimators for the two quantities. - ii. The authors also suggest that the differences between h_{all}^2 and h_{pop}^2 are likely to be small. In fact, the results here show that the difference may be large. In contrast to errors in estimation, which can be overcome by simply increasing sample size, there is no practical way to overcome the difference between the two quantities when considering close relatives. Throughout the paper, we introduce distinct terminology and nomenclature to distinguish between quantities with distinct definitions. #### 1.8 Problems with narrow and broad sense heritability estimates Calculating missing heritability is problematic for both the additive (narrow-sense) heritability h^2 and the overall (broad-sense) heritability H^2 . Consider a trait function $P = \Psi(G, E)$ that depends on genotype $G = (g_1, g_2, ..., g_n)$ and environment $E = (\epsilon_R, \epsilon_u)$. The situation for the narrow-sense heritability h^2 is discussed at length in the main text. The fundamental issue is this: it is straightforward to calculate h^2 based on a bottom-up calculation given the loci, but there is no way to obtain a top-down measure based on epidemiological data for an arbitrary (non-additive) function Ψ . For H^2 , the situation is roughly reversed. If we assume that the phenotype has no shared environmental component $(V_C = 0)$, then we can obtain a straightforward top-down estimate of H^2 : $$H_{all}^2 = r_{MZ}. (1.11)$$ However, there is no practical way to obtain a bottom-up estimate of the overall heritability explained by a set of variants, for an arbitrary (non-additive) function Ψ . The variance explained by a subset of the variants $S = \{g_1, g_2, ..., g_m\}$ is $$H_S^2 = 1 - \sum_{(g_1, ..., g_m) \in \{0, 1, 2\}^m} Pr(g_1, ..., g_m) Var(Z|g_1, ..., g_m)$$ (1.12) (Recall that the trait is normalized, $V_P = 1$). To calculate H_S^2 , we need to estimate the value of the 3^m terms in the sum. For an arbitrary function Ψ , this would require enough observations of each of the 3^m genotypes at the variant loci. Except when m is very small, the required sample size would be too large to be practical. # 2 The liability-threshold (A_{Δ}) model #### 2.1 Definition We adopt the classical liability threshold (A_{Δ}) model.^{4,5} In the main text we describe a minor variation where disease occurs if the liability is *below* (rather than above) a pre-specified threshold. This changes the biological interpretation of the model, but by symmetry, all quantities of interest remain unchanged. We describe the computations in terms of the classic model but they hold also for the model described in the main text. Briefly, the $A_{\Delta}(h^2, \tau)$ model defines an (observed) disease Z in terms of an (unobserved) quantitative trait P, called a liability. The trait P follows an additive model $P = \sum_{i=1}^{n} \beta_i g_i' + \epsilon$ (as in eq. (3) in the main text), with additive heritability h^2 , and the disease occurs (Z=1) if and only if $P \geq \tau$, for the specified threshold τ . The model is largely insensitive to the number of loci, their effect sizes and allele frequencies - as long as n is sufficiently large we can assume that P is approximately normally distributed. We will normalize P so that it follows a standard normal distribution N(0,1), with mean 0 and variance 1. We assume that the genetic component $\sum_i \beta_i g_i' \sim N(0,h^2)$ and the environmental component $\epsilon \sim N(0,1-h^2)$ are also normally distributed (with smaller variances). We can further partition the environmental component into shared and unique environmental variance, $\epsilon = \epsilon_{c,R} + \epsilon_{u,R}$, as discussed in the main text, where $\epsilon_{c,R}$ is the shared environmental component between two individuals with familial relationship R. In this case, we can parameterize the model as $A_{\Delta}(h^2, \tau, c_R)$, where c_R denotes the fraction of environmental variance which is shared, $c_R = Var(\epsilon_{c,R})/(1-h^2)$. #### 2.2 Risk to relatives The two parameters (h^2, τ) completely specify the genetic architecture and all observable parameters - including the prevalence μ and risk λ_R to relatives of each type R of an affected individual. The prevalence is simply $\mu = \Phi(\tau)$, where Φ is the standard Gaussian cumulative distribution function. To compute risk to relatives, we first write the joint distribution of liabilities of two family members, denoted P and P_R . Each of the two values is a standard Gaussian random variable, but they are correlated due to Identity-By-Descent (IBD) sharing. The average level of IBD sharing for relatives of degree R is $2\kappa_R$, where κ_R is the kinship coefficient $(\kappa_R = \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, ...$ for monozygotic twins, dizygotic twins, grandchildren-grandparents, cousins .. respectively). We do not consider here variations around these average values which arise in practice (see Sections 8-10). The average IBD sharing level determines the average correlation between P and P_R , and the vector (P, P_R) is a bivariate Gaussian random variable, with the mean (zero) vector and covariance matrix given by $$\begin{pmatrix} P \\ P_R \end{pmatrix} \sim N(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 2\kappa_R h^2 \\ 2\kappa_R h^2 & 1 \end{pmatrix}) \tag{2.1}$$ Using standard properties of the bivariate Gaussian distribution, we can derive the *conditional* distribution of the liability of one family member, P_R , given that we know the value of the liability for another family member, P, $$P_R|P \sim N(2\kappa_R h^2 P, 1 - 4\kappa_R^2 h^4)$$ (2.2) We compute the relative risk λ_R by integrating the bivariate Gaussian in the quarter of the (P, P_R) plane which lies above the liability threshold τ , that is $(P \ge \tau, P_R \ge \tau)$, $$\lambda_R = \frac{1}{\mu^2} Pr(P, P_R \ge \tau) = \frac{1}{\mu^2} \int_{x=\tau}^{\infty} \varphi(x) Pr(P_R \ge \tau | P = x) dx \tag{2.3}$$ where $\varphi (= \Phi')$ is the standard Gaussian probability density function. We get the following expression for the relative risk, $$\lambda_R = \frac{1}{\mu^2} \int_{x=\tau}^{\infty} \varphi(x) \left[1 - \Phi\left(\frac{\tau - \kappa_R h^2 x}{\sqrt{1 - \kappa_R^2 h^4}}\right) \right] dx$$ (2.4) ## 2.3 Fitting an A_{Δ} model from population data To apply the A_{Δ} model to a disease, one takes epidemiological observable parameters and fits the unseen parameters τ , h^2 and c_R . When only two epidemiological parameters are observable (say, μ and λ_{MZ}), we cannot fit 3 parameters. We therefore neglect the shared environment component c_R and fit only τ , h^2 (this will bias the estimation of h^2 upwards when shared environment is significant). First, for a given prevalence μ , we can compute the corresponding threshold $\tau = \tau(\mu)$ directly from the Gaussian distribution function, $\tau = \Phi^{-1}(\mu)$. Given the risk to a particular type of relative (for example, the risk λ_{MZ} to a monozygotic twin of an affected individual), we can solve for h^2 numerically in eq. (2.4) above to get the heritability. If we observe three population parameters, μ , λ_{MZ} and λ_s , we can fit all three parameters, τ, h^2 and c_R . This allows us to separate the phenotypic similarity among relatives to genetic (h^2) and shared environmental (c_R) parts. We solve again eq. (2.4), this time twice, for λ_{MZ} and λ_s separately, to get two different estimators h_s^2 and h_{MZ}^2 . Then the heritability h^2 and the shared environment coefficient c_R are determined by solving the linear system of two equations, $$h_{MZ}^2 = h^2 + c_R(1 - h^2); h_s^2 = h^2 + 2c_R(1 - h^2)$$ (2.5) #### 2.4 Effect size and heritability explained for a single locus In practice, the variants discovered in a GWAS (with genotypes g_i) are described in terms of risk allele frequency, f_i , and genetic relative risk η_i . The genetic relative risk can be defined as the relative increase in likelihood of disease given a homozygous risk genotype, compared to a heterozygous state, $\eta_i = \frac{Pr(Z=1|g_i=2)}{Pr(Z=1|g_i=1)}$. We can write the two alleles as $g_{i,(M)}, g_{i,(F)}$, with $g_i = g_{i,(M)} + g_{i,(F)}$, and can also define the genetic relative risk in terms of alleles, for example $\eta_i = \frac{Pr(Z=1|g_{i,(M)}=1)}{Pr(Z=1|g_{i,(M)}=0)}$. That is, η_i is the increased risk to a carrier of a risk allele compared to a non-carrier (we can write a similar equation for the paternal allele). We assume that the risk due to the paternal allele is identical, and that there is no dominance interaction between the two alleles - in this case the two definitions for η_i are equivalent.⁶ For a genotype g_i , we need to convert between η_i , the genetic relative risk on the observed disease scale, and β_i , the effect size; or equivalently h_i^2 , the heritability explained by the locus on the liability scale. For a genotype g_i with risk allele frequency f_i and additive effect β_i , the heritability explained is $h_i^2 = 2\beta_i^2 f_i (1 - f_i)$. The risk for disease for a given value of each allele (0 or 1) is, $$Pr(Z=1|g_{i,(M)}=j) = 1 - \Phi\left(\frac{\tau + \beta_i f_i^j (f_i - 1)^{1-j}}{\sqrt{1 - \beta_i^2 f_i (1 - f_i)}}\right), \quad j = 0, 1$$ (2.6) and the genetic relative risk η_i is, $$\eta_{i} = \eta(\beta_{i}, f_{i}) = \frac{1 - \Phi\left(\frac{\tau - \beta_{i}(1 - f_{i})}{\sqrt{1 - \beta_{i}^{2} f_{i}(1 - f_{i})}}\right)}{1 - \Phi\left(\frac{\tau + \beta_{i} f_{i}}{\sqrt{1 - \beta_{i}^{2} f_{i}(1 -
f_{i})}}\right)}$$ (2.7) Assuming that there is no dominance interaction between the maternal and paternal alleles, the increased risk for a homozygous risk-allele carrier $(g_i = 2)$, compared to a homozygous alternative allele carrier $(g_i = 0)$, will be simply η_i^2 . ## 3 The limiting pathway (LP) model for quantitative traits #### 3.1 Definition The Limiting Pathways model for quantitative trait $LP(k, h_{pathway}^2, c_R)$ is defined as the minimum of k standard Gaussian i.i.d. random variables, Z_i , with each being the sum of genetic, common environmental and unique environmental components, with respective variances $h_{pathway}^2$, $c_R(1 - h_{pathway}^2)$ and $(1 - c_R)(1 - h_{pathway}^2)$ (see main text). For a single pathway (k = 1), this definition reduces to the simple additive model (see eq. (3) in the main text). From this definition, we can compute all parameters of interest - including the phenotypic correlation between relatives, the true (additive) heritability h_{all}^2 and the apparent heritability h_{pop}^2 that one would calculate from epidemiologically observable parameters. The overall shared environment for the trait, V_c , is defined as the difference between the MZ twin phenotypic correlation, and the correlation of MZ twins reared apart, $V_c = r_{MZ} - r_{MZ} \{c_{R}=0\}$. The latter correlation, $r_{MZ}\{c_{R}=0\}$ is simply computed as the MZ twin correlation for the model $LP(k, h_{pathway}^2, 0)$. ## 3.2 Calculating the true heritability, h_{all}^2 This section provides a detailed calculation of the heritability in the LP model $LP(k, h_{pathway}^2, c_R)$. The observed trait can be written as the maximum of k i.i.d. standard Gaussian random variables, $Z = \max(Z_1, ..., Z_k)$. The probability distribution function G_k and probability density function g_k of Z are, $$G_k(z) = Pr(Z \le z) = \Phi(z)^k; \quad g_k(z) = k\Phi(z)^{k-1}\varphi(z)$$ (3.1) The mean and variance of z are, $$\mu_Z = E[Z] = \int_{z=-\infty}^{\infty} g_k(z)zdz = k \int_{z=-\infty}^{\infty} \Phi(z)^{k-1} \varphi(z)zdz$$ (3.2) $$\sigma_Z^2 = E[Z^2] - (E[Z])^2 = \int_{z=-\infty}^{\infty} g_k(z)z^2dz - \left[\int_{z=-\infty}^{\infty} g_k(z)zdz\right]^2 =$$ $$k \int_{z=-\infty}^{\infty} \Phi(z)^{k-1} \varphi(z) z^2 dz - \left[k \int_{z=-\infty}^{\infty} \Phi(z)^{k-1} \varphi(z) z dz \right]^2$$ (3.3) The true (bottom-up) heritability h_{all}^2 is defined as the sum of the additive contributions over all loci $h_{all}^2 = \sum_j h_j^2 = \sum_j \beta_j^2 f_j (1 - f_j)$. Since the genetic contribution within each pathway is additive (in similar to eq. (3) in the main text), we can compute the heritability directly by calculating the variance explained by the entire pathway variable Z_i . By symmetry, each pathway contributes the same amount to the true heritability h_{all}^2 . We can therefore express h_{all}^2 as $$h_{all}^{2} = k \cdot corr(Z_{1}, Z)^{2} h_{pathway}^{2} = k h_{pathway}^{2} \left[\frac{E[Z_{1} \cdot Z] - E[Z_{1}]E[Z]}{\sigma_{Z_{1}} \sigma_{Z}} \right]^{2} = k h_{pathway}^{2} \frac{(E[Z_{1} \cdot Z])^{2}}{\sigma_{Z}^{2}}$$ (3.4) We compute the expectation $E[Z_1 \cdot Z]$ by introducing a new variable $Z^{(\sim 1)} \equiv \max(Z_2, ..., Z_k)$, which is the maximum over all liabilities except Z_1 . We can represent the trait Z as $Z = \max(Z_1, Z^{(\sim 1)})$. The variables $Z_1, Z^{(\sim 1)}$ are independent, and we compute the expectation by summing over two disjoint events - either the maximum is attained for Z_1 (i.e., $Z_1 \geq Z^{(\sim 1)}$), or it is attained for some other Z_i (i.e. $Z_1 < Z^{(\sim 1)}$), $$E[Z_1 \cdot Z] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(z_1) g_{k-1}(z^{(\sim 1)}) z_1 \max(z_1, z^{(\sim 1)}) dz_1 dz^{(\sim 1)} =$$ $$\int_{-\infty}^{\infty} \varphi(z_1) z_1^2 \left[\int_{-\infty}^{z_1} g_{k-1}(z^{(\sim 1)}) dz^{(\sim 1)} \right] dz_1 + \int_{-\infty}^{\infty} g_{k-1}(z^{(\sim 1)}) z^{(\sim 1)} \left[\int_{-\infty}^{z^{(\sim 1)}} \varphi(z_1) z_1 dz_1 \right] dz^{(\sim 1)} = 0$$ $$\int_{-\infty}^{\infty} \varphi(z_1) z_1^2 \Phi(z_1)^{k-1} dz_1 + (k-1) \int_{-\infty}^{\infty} -\varphi(z^{(\sim 1)})^2 z^{(\sim 1)} \Phi(z^{(\sim 1)})^{k-2} dz^{(\sim 1)} =$$ $$\int_{-\infty}^{\infty} \Phi(z_1)^{k-2} \varphi(z_1) z_1 \left[z_1 \Phi(z_1) - (k-1) \varphi(z_1) \right] dz_1 \tag{3.5}$$ Substituting eqs. (3.3,3.5) in eq. (3.4), the bottom-up heritability explained by all loci is, $$h_{all}^{2} = \frac{h_{pathway}^{2} \left[\int_{-\infty}^{\infty} \Phi(z)^{k-2} \varphi(z) z (z \Phi(z) - (k-1)\varphi(z)) dz \right]^{2}}{\int_{z=-\infty}^{\infty} \Phi(z)^{k-1} \varphi(z) z^{2} dz - k \left[\int_{z=-\infty}^{\infty} \Phi(z)^{k-1} \varphi(z) z dz \right]^{2}}$$ (3.6) # 3.3 Calculating the apparent heritability, h_{pop}^2 Our goal is to calculate the value of h_{pop}^2 if the trait follows the LP model. We use the traditional estimate from eq. (1.5), which requires the calculation of r_{MZ} and r_{DZ} . We calculate below $r_R = corr(Z, Z_R)$ for general degree of relationship R, which includes as special cases r_{MZ} and r_{DZ} . If z and z_R are the trait's values for two family members of degree R, then $$r_{R} = \frac{E[Z \cdot Z_{R}] - E[Z]E[Z_{R}]}{\sigma_{Z}\sigma_{Z_{R}}} = \frac{E[Z \cdot Z_{R}] - \mu_{Z}^{2}}{\sigma_{Z}^{2}}$$ (3.7) with μ_Z , σ_Z^2 given in eqs. (3.2, 3.3), respectively. To compute $E[Z \cdot Z_R]$, recall that $Z = \max(Z_1, ..., Z_k)$ and $Z_R = \max(Z_{1,R}, ..., Z_{k,R})$, with Z_i 's i.i.d., $Z_{i,R}$ i.i.d., and for each i the pair $(Z_i, Z_{i,R})$ has the joint bivariate Gaussian distribution given in eq. (2.1), with correlation coefficient $$\rho_R \equiv corr(Z_i, Z_{i,R}) = 2\kappa_R h_{pathway}^2 + c_R(1 - h_{pathway}^2)$$ (3.8) (we assume that shared environment is similar for any familial relationship.) We define $g_{k,R}(z_R|z)$ as the *conditional* density function of Z_R , the trait's value for a relative of degree R, given that the value of Z, the trait's value for a given individual, is known. The conditional cumulative distribution function is, $$G_{k,R}(z_R|z) = Pr(Z_R \le z_R|Z = z) = Pr(Z_R \le z_R|Z_1 = z; Z_2, ..., Z_k \le z) =$$ $$Pr(Z_{1,R} \le z_R | Z_1 = z) \prod_{i=2}^k Pr(Z_{i,R} \le z_R | Z_i \le z) = \Phi\left(\frac{z_R - \rho_R z}{\sqrt{1 - \rho_R^2}}\right) \left[\frac{1}{\Phi(z)} \int_{t=-\infty}^z \varphi(t) \Phi\left(\frac{z_R - \rho_R t}{\sqrt{1 - \rho_R^2}}\right) dt\right]^{k-1}$$ (3.9) where in the calculation we assume without loss of generality that the maximum for Z was obtained by the first Gaussian Z_1 , and use the conditional Gaussian distribution as in eq. (2.2) for each pair of liability $(Z_i, Z_{i,R})$. Differentiating with respect to Z_R gives the conditional density function $g_{k,R}$, $$g_{k,R}(z_R|z) = \frac{1}{\Phi(z)^{k-1} \sqrt{1 - \rho_R^2}} \left[\int_{t=-\infty}^z \varphi(t) \Phi\left(\frac{z_R - \rho_R t}{\sqrt{1 - \rho_R^2}}\right) dt \right]^{k-2}$$ $$R \int_{-\infty}^z \varphi(t) \Phi\left(\frac{z_R - t\rho_R}{\sqrt{1 - \rho_R^2}}\right) dt + \left(\frac{z_R - z\rho_R}{\sqrt{1 - \rho_R^2}}\right) \int_{-\infty}^z \varphi(t) \varphi\left(\frac{z_R - t\rho_R}{\sqrt{1 - \rho_R^2}}\right) dt$$ $$\left[\varphi\left(\frac{z_R - z\rho_R}{\sqrt{1 - \rho_R^2}}\right) \int_{t = -\infty}^{z} \varphi(t) \Phi\left(\frac{z_R - t\rho_R}{\sqrt{1 - \rho_R^2}}\right) dt + (k - 1) \Phi\left(\frac{z_R - z\rho_R}{\sqrt{1 - \rho_R^2}}\right) \int_{t = -\infty}^{z} \varphi(t) \varphi\left(\frac{z_R - t\rho_R}{\sqrt{1 - \rho_R^2}}\right) dt\right]$$ (3.10) We use g_k and $g_{k,R}$ to express the expectation $E[Z \cdot Z_R]$, $$E[Z \cdot Z_R] = \int_{z=-\infty}^{\infty} g_k(z) z \left[\int_{z_R=-\infty}^{\infty} g_{k,R}(z_R|z) z_R dz_R \right] dz =$$ $$\int_{z=-\infty}^{\infty} g_k(z) z \int_{z_R=-\infty}^{\infty} \left\{ \frac{1}{\Phi(z)^{k-1} \sqrt{1-\rho_R^2}} \Big[\int_{t=-\infty}^z \varphi(t) \Phi\Big(\frac{z_R-t\rho_R}{\sqrt{1-\rho_R^2}}\Big) \times dt \Big]^{k-2} \right\}$$ $$\left[\varphi\left(\frac{z_R - z\rho_R}{\sqrt{1 - \rho_R^2}}\right) \int_{t = -\infty}^{z} \varphi(t) \Phi\left(\frac{z_R - t\rho_R}{\sqrt{1 - \rho_R^2}}\right) dt + (k - 1) \Phi\left(\frac{z_R - z\rho_R}{\sqrt{1 - \rho_R^2}}\right) \int_{t = -\infty}^{z} \varphi(t) \varphi\left(\frac{z_R - t\rho_R}{\sqrt{1 - \rho_R^2}}\right) dt\right] \right\} z_R dz_R dz$$ $$(3.11)$$ Substituting eqs. (3.2, 3.3, 3.11) in eq. (3.7) gives the familial correlation, $$r_R = \frac{1}{k \int_{z=-\infty}^{\infty} \Phi(z)^{k-1} \varphi(z) z^2 dz - \left[k \int_{z=-\infty}^{\infty} \Phi(z)^{k-1} \varphi(z) z dz \right]^2} \times \left\{ \int_{z=-\infty}^{\infty} g_k(z) z \int_{z_R=-\infty}^{\infty} \left\{ \frac{1}{\Phi(z)^{k-1} \sqrt{1 - \rho_R^2}} \left[\int_{t=-\infty}^{z} \varphi(t) \Phi\left(\frac{z_R - t \rho_R}{\sqrt{1 - \rho_R^2}}\right) dt \right]^{k-2} \times \right\} \right\}$$ $$\left[\varphi\left(\frac{z_R - z\rho_R}{\sqrt{1 - \rho_R^2}}\right) \int_{t = -\infty}^{z} \varphi(t) \Phi\left(\frac{z_R - t\rho_R}{\sqrt{1 - \rho_R^2}}\right) dt + (k - 1) \Phi\left(\frac{z_R - z\rho_R}{\sqrt{1 - \rho_R^2}}\right) e^{-z_R^2/2} \sqrt{\frac{1 - \rho_R^2}{2\pi}} \Phi\left(\frac{z - z_R \rho_R}{\sqrt{1 - \rho_R^2}}\right) \right] \right\} z_R dz_R dz - \left[k \int_{z = -\infty}^{\infty} \Phi(z)^{k - 1} \varphi(z) z dz\right]^2$$ $$(3.12)$$ The apparent (top-down) heritability h_{pop}^2 is then computed according to the ACE model by substituting eq. (3.12) in eq. (1.5). #### 3.4 Phantom heritability approaches 100% as k increases According to the $LP(k, h_{pathway}^2, c_R)$ model, the trait distribution is the (normalized) minimum of k independent standard Gaussian random variables. Each locus contributes additively to one of these Gaussians. Therefore, (see eq.(3.4)), the true heritability h_{all}^2 is proportional to the correlations between each liability, Ψ_i , and the trait $P = \min(\Psi_i)$. We show that as k goes to ∞
, the phantom heritability $\pi_{phantom}$ goes to zero. Berman⁷ showed that $\sum_i \Psi_i$ and $P = \min(\Psi_i)$ are asymptotically independent as $k \to \infty$. Hence, $h_{all}^2 \to 0$, that is, the true heritability, measuring the additive contribution of all loci to the trait, goes to zero. On the other hand, the apparent heritability may not approach zero, or approach zero at a slower rate. Therefore, the ratio $\frac{h_{all}^2}{h_{pop}^2}$ approaches zero as k increases, and therefore, $$\pi_{phantom} = 1 - \frac{h_{all}^2}{h_{pop}^2} \to 1, \quad \text{as } k \to \infty$$ (3.13) This is easiest to see first for the special case where we set the parameter $h_{pathway}^2 = 100\%$. In this case, the additive contribution of all loci to each liability is 100% and the trait is entirely determined by genetics (albeit in a non-linear way). Therefore $r_{MZ} = 1$ irrespective of k. Since $r_{DZ} \leq 1/2$ (again, for any k) we have $h_{pop}^2 = 1$ and $\pi_{phantom} \to 100\%$ as $k \to \infty$. Although h_{all}^2 goes to zero, the total variance in the trait remains constant, since by definition the trait is normalized. More generally, for a given observable population parameters r_{MZ}, r_{DZ} , and for each k, we can fit $h_{pathway}^2(k)$ and $c_R(k)$ to match r_{MZ}, r_{DZ} precisely, and therefore h_{pop}^2 . Thus, the heritability estimated from population data remains constant (the fitted parameter $h_{pathway}^2(k)$ goes to 1 as k increases in order to achieve a constant non-zero h_{pop}^2). However, as before, $h_{all}^2 \to 0$, giving $\pi_{phantom} \to 1$. ## 4 The limiting pathway (LP $_{\Delta}$) model for disease traits #### 4.1 Definition Using the Limiting Pathway model $LP(k, h_{pathway}^2, c_R)$ above, we define a disease trait whereby disease occurs if and only if $LP(k, h_{pathway}^2, c_R) \leq \tau$. We denote this trait by $Z = LP_{\Delta}(k, h_{pathway}^2, c_R, \mu)$ where μ is the disease prevalence, $\mu = 1 - \Phi(\tau)^k$. (Z=1 corresponds to disease, Z=0 to non-disease.) For a single pathway (k = 1), this definition reduces to the A_{Δ} model above. From this definition, we can compute all parameters - including the risks to relatives of affected individuals, the true (additive) heritability h_{all}^2 and the apparent heritability h_{pop}^2 that would be calculated from epidemiologically observable parameters. #### 4.2 Calculating the risk to relatives of affected individuals We can compute the risk for a family member of degree R can as follows. First, we compute the joint 2×2 matrix p_R of probabilities that a given liability exceeds the threshold in each of the two relatives: $$p_R = \begin{pmatrix} p_R(00) & p_R(01) \\ p_R(01) & p_R(11) \end{pmatrix}$$ (4.1) That is, $p_R(ij)$ is the probability that one liability (say Ψ_1) is at state i in a given individual, and at a state j in a relative of degree R of this individual, where i, j = 1 means that the threshold τ is exceeded and i, j = 0 means that the threshold is not exceeded. We mark the (zero/one) state of the ith liability in a given individual by Z_i - that is, $Z_i = 1$ if and only if $\Psi_i \geq \tau$. Similarly, Z_{iR} denotes the state of the ith liability for a relative of degree R. We can compute the matrix p_R as in eq. (2.4): $$p_R(11) \equiv Pr(Z_i = 1, Z_{iR} = 1) = \int_{x=\tau}^{\infty} \varphi(x) \left[1 - \Phi\left(\frac{\tau - 2\kappa_R h_{pathway}^2 x}{\sqrt{1 - 4\kappa_R^2 h_{pathway}^4}}\right) \right] dx \tag{4.2}$$ where we denote $h_{pathway}^4 = (h_{pathway}^2)^2$. Similarly, $$p_R(01) = p_R(10) \equiv Pr(Z_i = 0, Z_{iR} = 1) = \mu - \int_{x=\tau}^{\infty} \varphi(x) \left[1 - \Phi\left(\frac{\tau - 2\kappa_R h_{pathway}^2 x}{\sqrt{1 - 4\kappa_R^2 h_{pathway}^4}}\right) \right] dx \quad (4.3)$$ $$p_R(00) \equiv Pr(Z_i = 0, Z_{iR} = 0) = 1 - 2\mu + \int_{x=\tau}^{\infty} \varphi(x) \left[1 - \Phi\left(\frac{\tau - 2\kappa_R h_{pathway}^2 x}{\sqrt{1 - 4\kappa_R^2 h_{pathway}^4}}\right) \right] dx$$ (4.4) We express the probability of both relatives being affected in terms of the $p_R(ij)$ as follows, $$Pr(Z = 1, Z_R = 1) = \sum_{j=1}^{k} \sum_{j'=1}^{k} Pr\left(\sum_{i=1}^{k} Z_i = j, \sum_{i=1}^{k} Z_{iR} = j'\right) =$$ $$\sum_{j=1}^{k} \sum_{j'=1}^{k} \sum_{l=\max(0,j+j'-k)}^{\min(j,j')} {k \choose l,j-l,j'-l,k-j-j'+l} p_R(11)^l p_R(01)^{j+j'-2l} p_R(00)^{k-j-j'+l}$$ (4.5) Here l denotes how many liabilities are common to the two relatives. The multinomial coefficient determines the number of liabilities exceeding the threshold τ for both (l), each one (j-l) and (j'-l) or none (k-j-j'+l) of the individuals. We obtain the relative risk λ_R by normalizing by $\mu^{(D)2}$, $$\lambda_{R} = \frac{1}{\mu^{(D)2}} \sum_{j,j'=1}^{k} \sum_{l=\max(0,j+j'-k)}^{\min(j,j')} \left[\binom{k}{l,j-l,j'-l,k-j-j'+l} p_{R}(11)^{l} p_{R}(01)^{j+j'-2l} p_{R}(00)^{k-j-j'+l} \right]$$ (4.6) # 4.3 Calculating the true heritability, h_{all}^2 , and apparent heritability, h_{pop}^2 Since we measure heritability on the liability scale, the true additive heritability h_{all}^2 explained by all loci is the heritability under the model $LP(k, h_{pathway}^2, c_R)$ for quantitative traits, and is given in eq. (3.6). To calculate the apparent heritability h_{pop}^2 we first compute the familial risks λ_{MZ}, λ_s using eq. (4.6). Then, we convert the risks to correlations on the (single) liability scale by assuming that in fact the A_{Δ} model is the true disease model and solving for r_{MZ} or r_{DZ} in eq. (2.4). Finally, we compute the heritability according to the ACE model as in eq. (1.5). We also describe below how to compute the heritability on the observed disease scale, $h_{all,\Delta}^2$. Similarly to eq. (3.4), we have $$h_{all,\Delta}^2 = k h_{pathway}^2 \frac{(E[Z_1 \cdot Z])^2}{\sigma_Z^2} = k h_{pathway}^2 \frac{(E[Z_1 \cdot Z])^2}{\mu(1-\mu)}$$ (4.7) We get, $$E[Z_1 \cdot Z] = \int_{-\infty}^{\infty} \varphi(z_1) z_1 E[Z|z_1] dz_1 =$$ $$\int_{-\infty}^{\tau} \varphi(z_1) z_1 [1 - (1 - \mu)^{(k-1)/k}] dz_1 + \int_{\tau}^{\infty} \varphi(z_1) z_1 dz_1 = (1 - \mu)^{(k-1)/k} \varphi(\tau)$$ (4.8) where we have used the relation $\Phi(\tau)^k = 1 - \mu$. Substituting in eq. (4.7) gives, $$h_{all,\Delta}^2 = \frac{k\varphi(\tau)^2}{\mu(1-\mu)^{(2-k)/k}} h_{pathway}^2$$ (4.9) Eq. (4.9) is a generalization of the transformation from Dempster and Lerner⁴, proven for k = 1 (the additive A_{Δ} model), where $h_{pathway}^2 = h_{all}^2$ (see Section 8.3). #### 4.4 Generalized multiple pathways models Substantial phantom heritability is not a unique property of the LP models. We can generalize the LP model to a multiple pathway (MP) model, which we define as any trait T determined by the output of multiple pathways: $$T = u(\Psi_1, \Psi_2, ..., \Psi_k), \tag{4.10}$$ with the Ψ_i 's as above. We discuss some specific examples: - i. Several pathways below threshold. A trait might occur if j of the k pathways fall below a threshold τ . The LP models represent the case where j = 1. - ii. Synthetic traits: All pathways below threshold. The special case where j = k is known in genetics as a synthetic trait that is, a trait that occurs when several components are all disrupted (corresponding to $\max(\Psi_i) \leq \tau$). Synthetic traits, are well known in genetics (see e.g.⁸). - iii. Non-linear combinations. Various other non-linear function u can be used. For example, we could choose $u(\Psi_1, \Psi_2, ..., \Psi_k) = \log[\sum_i e^{\alpha \Psi_i}]$. For $\alpha \to 0$, this reduces to additive traits. When $\alpha \to \infty$, this reduces to the LP model (with $max(\Psi_i)$ instead of $min(\Psi_i)$). In Supp. Fig. 6 we display the heritability calculated for a model with k = 3 pathways as a function of α . The phantom heritability increases with α : it is already at $\sim 33\%$ for $\alpha = 2$ and rapidly approaches the levels for the LP model for $\alpha > 5$. - iv. **Linear combinations.** Another interesting case is obtained by considering a linear combination of different LP models. Consider for example, two different LP models: $$P^{(1)} \equiv LP(k=2, h_{pathway}^2 = 70\%, c_R = 50\%)$$ and $$P^{(2)} \equiv LP(k=3, h_{pathway}^2 = 50\%, c_R = 50\%)$$ (4.11) Also, consider the average of these two models (normalized to have variance 1): $$P^{(1+2)} = \frac{1}{\sqrt{2}}P^{(1)} + \frac{1}{\sqrt{2}}P^{(2)} \tag{4.12}$$ The true, apparent and phantom heritabilities for these models are listed below in Supp. Table 1. | Heritability | Model $P^{(1)}$ | Model $P^{(2)}$ | Model $P^{(1+2)}$ | |-----------------|-----------------|-----------------|-------------------| | h_{all}^2 | 51.3% | 29.8% | 40.6% | | h_{pop}^2 | 75.9% | 53.5% | 64.7% | | $\pi_{phantom}$ | 32.3% | 44.3% | 37.3% | **Table 1:** True, apparent and phantom heritabilities for the two LP models $P^{(1)}$, $P^{(2)}$ and their linear combination $P^{(1+2)}$. For $P^{(1+2)}$, the quantities of interest, including the phantom heritability, are all intermediate between the levels for $P^{(1)}$ and $P^{(2)}$. More generally, we have the following result: **Proposition 1** Let $\Psi^{(1)}, ..., \Psi^{(m)}$ be different genetic architectures, where each architecture is comprised of distinct causal loci, with the causal loci for different architectures being in linkage equilibrium. Assume the architectures are normalized to have mean zero and variance one. Let $h_{all}^2(i)$ be the individual bottom-up heritabilities (and similarly for $h_{pop}^2(i)$ and $\pi_{phantom}(i)$). Let $\Psi = \sum_i \alpha_i \Psi^{(i)}$ with the α_i 's satisfying $0 \le \alpha_i \le 1, \sum_i \alpha_i^2 = 1$. Let $h_{all}^2(\Psi)$ be the bottom-up heritability of Ψ (and similarly for $h_{pop}^2(\Psi)$ and $\pi_{phantom}(\Psi)$). Then, we have, - (a) $h^2_{all}(\Psi) = \sum_i \alpha_i^2 h^2_{all}(i)$ - (b) $h_{pop}^2(\Psi) =
\sum_i \alpha_i^2 h_{pop}^2(i)$ - (c) $\pi_{phantom}(\Psi) = 1 \frac{h_{all}^2(\Psi)}{h_{pop}^2(\Psi)}$ is an intermediate value between the highest and lowest individual phantom heritabilities. #### **Proof:** (a) Consider one causal locus x_{ij} with effect size β_{ij} on the i-th architecture $\Psi^{(i)}$, and variance explained $V_{ij} = \beta_{ij}^2 Var(x_{ij})$. Denote $\beta_{ij}(\Psi)$ the effect size of the same locus on the combined trait Ψ . Then, $$\beta_{ij}(\Psi) = Corr(x_{ij}, \Psi) = \frac{E[x_{ij}\Psi]}{\sigma(x_{ij})} = \frac{1}{\sigma(x_{ij})} \sum_{l} \alpha_l E[x_{ij}\Psi^{(l)}] = \alpha_i \frac{1}{\sigma(x_{ij})} E[x_{ij}\Psi^{(i)}] = \alpha_i \beta_{ij}$$ $$(4.13)$$ Therefore, $V_{ij}(\Psi)$, the variance explained by x_{ij} of the trait Ψ is $$V_{ij}(\Psi) = \beta_{ij}(\Psi)^2 Var(x_{ij}) = \alpha_i^2 V_{ij}$$ (4.14) Summing over all loci within the i-th architecture gives $\sum_{j} V_{ij}(\Psi) = \alpha_i^2 h_{all}^2(i)$. Summing over all the individual architectures gives the desired result. (b) In all three models we have considered, h_{pop}^2 is obtained by a linear combination of the phenotypic correlation r_R , for different family relationship R (see eqs. (1.5, 1.7, 1.9)). It therefore suffices to show that $r_R(\Psi) = \sum_i \alpha_i^2 r_R(i)$. This follows from linearity of expectation, $$r_{R}(\Psi) = Corr(Z, Z^{(R)}) = E[ZZ^{(R)}] = E[(\sum_{i} \alpha_{i} \Psi^{(i)})(\sum_{i} \alpha_{i} \Psi^{(i),R})] = \sum_{i,j} \alpha_{i} \alpha_{j} E[\Psi^{(i)} \Psi^{(j),R}] = \sum_{i} \alpha_{i}^{2} E[\Psi^{(i)} \Psi^{(i),R}] = \sum_{i} \alpha_{i}^{2} r_{R}(i)$$ (4.15) (c) Plugging in the formulas for h_{all}^2 and h_{pop}^2 gives the formula for $\pi_{phantom}$ for the combined model. The resulting h_{all}^2 and h_{pop}^2 are a weighted average of the individual $h_{all}^2(i)$'s and $h_{pop}^2(i)$'s. It easily follows by simple induction that $\pi_{phantom}$ lies within the range $[\min_i \pi_{phantom}(i), \max_i \pi_{phantom}(i)]$. We conclude that a linear combination of different non-linear (e.g. LP) models yields an intermediate value of the phantom heritability. Thus, if several biological processes each have substantial phantom heritability, then an additive combination of the processes will also have substantial phantom heritability. If the architecture involves a non-linear combination of different non-linear (e.g. LP) models, the phantom heritability is likely to increase further. An obvious example is an LP(m) model of m different LP(n) model, which is in fact an LP(mn) model, with phantom heritability greater than the individual LP(n) models. # 5 Numerical properties of LP models: Traditional formulas mis-estimate heritability In this section we describe the details of comparing the predictions provided by the different LP models, to actual epidemiological data collected for various quantitative traits and diseases in human. We describe the data and models used to produce Fig. 1 in the main text and Supp. Figs. 2 - 5 (for both quantitative and disease traits). ## 5.1 Epidemiological data for quantitative traits Data for 86 different traits from Hill et al.⁹ are shown in Supp. Fig. 2a. The data were kindly provided by P. Visscher. They are given in Supp. Table 6. #### 5.2 Epidemiological data for disease traits Data for 15 different diseases from Wray et al.¹⁰ are shown in Supp. Fig. 2b. They are given below in Supp. Table 2. | Disease | λ_{MZ} | λ_s | $\mu(\%)$ | λ_s (exp.) | $Dev.(\lambda)$ (%) | $h_{pop}^2(\%)$ | |-----------------------|----------------|-------------|-----------|--------------------|---------------------|-----------------| | Depression | 2.0 | 1.3 | 24.0 | 1.5 | 12.4 | 68.5 | | AMD | 4.7 | 2.1 | 12.0 | 2.4 | 14.1 | 92.0 | | Myocardial infarction | 4.6 | 3.2 | 5.6 | 2.4 | -25.8 | 29.0 | | Breast cancer | 4.1 | 2.2 | 3.6 | 2.2 | -0.2 | 37.1 | | Type 2 diabetes | 10.4 | 3.5 | 2.8 | 3.9 | 11.6 | 70.6 | | Asthma | 6.6 | 3.4 | 19.0 | 2.2 | -34.0 | 100.0 | | Rheumatoid Arthritis | 12.2 | 3.5 | 1.0 | 4.2 | 20.4 | 55.7 | | Bipolar Disorder | 60.0 | 7.0 | 1.0 | 11.2 | 59.7 | 100.0 | | Schizophrenia | 52.1 | 8.6 | 0.9 | 10.5 | 22.5 | 94.5 | | Type 1 diabetes | 79.0 | 14.0 | 0.5 | 13.7 | -1.9 | 83.1 | | Multiple sclerosis | 190.0 | 20.0 | 0.1 | 23.8 | 18.8 | 78.6 | | Crohn's disease | 600.0 | 64.0 | 0.1 | 47.2 | -26.3 | 90.5 | | Ankylosis spondylitis | 630.0 | 82.0 | 0.1 | 48.2 | -41.2 | 92.0 | | $Lupus^{(1)}$ | 841.0 | 29.0 | 0.1 | 53.2 | 83.3 | 100.0 | | $Lupus^{(2)}$ | 774.0 | 65.0 | 0.0 | 58.3 | -10.3 | 78.0 | Table 2: Reported values of the relative risk for monozygotic twins (λ_{MZ}) , relative risk for siblings (λ_s) , and prevalence μ for each disease. λ_s (exp.) is the value of λ_s which would be expected for a disease that follows an additive A_{Δ} model with no shared environment and the reported prevalence μ and monozygotic twin risk λ_{MZ} . $Dev.(\lambda) = \frac{\lambda_s - \lambda_s(exp.)}{\lambda_s(exp.)}$ is the relative deviation in sibling relative risk compared to the expected value $\lambda_s(exp.)$. h_{pop}^2 is the heritability obtained from μ, λ_s and λ_{MZ} assuming an additive A_{Δ} model and using the ACE estimator. #### 5.3 Data in Fig. 1a: Phantom heritability for quantitative traits In Fig. 1a in the main text, we studied various quantitative traits defined by LP models. The data in Fig. 1a were calculated using the formulas in Section 3. For each model, the relevant parameters $(r_{MZ}, r_{DZ}, h_{all}^2, h_{pop}^2, \pi_{phantom})$ are listed in Supp. Table 7. We varied k=1,...,10, the number of pathways, $h_{pathway}^2=0.1,0.3,0.5,0.7,0.9$, the heritability in each pathway, and $C_R=0,0.25,0.5,0.75$, the fraction of environmental variance shared among siblings or parent-offspring. $h_{c,env}^2$ denotes the shared environmental component in each pathway (which is equal to $c_R(1-h_{pathway}^2)$). We display also the monozygotic and dizygotic twin correlations, r_{MZ} and r_{DZ} , respectively. For each LP model, we have computed the true (bottom-up) heritability h_{all}^2 . The h_{all}^2 values should be contrasted with the top-down heritability h_{pop}^2 , computed using the ACE model, with $\pi_{phantom}$ showing the lack of agreement between these two measures. In addition, we display in Supp. Table 7 the values of h_{pop}^2 and $\pi_{phantom}$ for two other population estimates, using the ADE and PO models (see Section 5.5 for more details on the alternative estimates). #### 5.4 Data in Fig. 1b: Phantom heritability for disease traits In Fig. 1b in the main text, we studied various quantitative traits defined by LP models. The data in Fig. 1b were calculated using the formulas in Section 4. For each model, the relevant parameters $(\lambda_{MZ}, \lambda_{sib}, h_{all}^2, h_{pop}^2, \pi_{phantom})$ are listed in Supp. Table 8. #### 5.5 Alternative heritability estimates Fig. 1a (for quantitative traits) and Fig. 1b (for diseases) in the main text show the values of h_{pop}^2 that would be calculated under the ACE estimate for the LP models, using eq. (1.5). We also calculated the values of h_{pop}^2 for these same LP models using the two other estimates, $h_{pop}^2(ADE)$ (see eq. (1.7)) and $h_{pop}^2(PO)$ (see eq. (1.9)). The data these all estimators is also displayed in Supp. Table 8 (for quantitative traits) and Supp. Table 8 (for diseases). Consider, for example, the P^* model $LP(k=4, h_{pathway}^2 = 50\%, c_R = 50\%)$, where 50% of the environmental variance (and thus 25% of the overall variance) in each pathway is shared. The true heritability is $h^2 = h_{all}^2 = 25.4\%$. The apparent heritabilities are $h_{pop}^2(ACE) = 54.0\%, h_{pop}^2(ADE) = 79.2\%$ and $h_{pop}^2(PO) = 70.8\%$, yielding phantom heritabilities of 52.9%, 67.9% and 64.1%, respectively. Some observations: - The true heritability h_{all}^2 does not depend on c_R , the proportion of the environmental variance that is shared. However, the apparent heritability h_{pop}^2 for all three estimators is inflated by shared environment (with the exception of the ACE estimator in the case of additive models, LP(1)). - Genetic interactions cause large inflation of the ACE estimator. - Genetic interactions also inflate the PO estimator, although somewhat less so. - As noted in Section 1, genetic interactions lead to underestimates for the ADE estimator. However, shared environment causes substantial overestimation, due to the term $3V_{c,env}$ appearing in the error term (see eq.(1.8)). As a result, the ADE model actually gives the highest phantom heritability for the P^* model. - For disease traits, the picture is largely similar. An important major difference is that the ADE estimator for diseases can give substantial phantom heritability even when there is no shared environment. For example, for the model $LP(k=3, h_{pathway}^2 = 70\%, c_R = 0\%)$, the ADE estimator gives 25.9% phantom heritability. This is lower than values given by the ACE estimator (60.6%) and the PO estimator (42.7%), but still considerable. ### 6 Crohn's disease, schizophrenia and other traits #### 6.1 Crohn's disease A recent meta-analysis with $\sim 15,000$ cases and $\sim 6,000$ controls reported 71 loci associated with Crohn's disease. We analyzed these loci, together with three previously known independent variants at the NOD2 locus, in terms of their contribution to heritability [M. Daly, personal communication]; hence we refer hereafter to this set as 'the 74 loci'. For our analysis, we used values for the heritability $h_{pop}^2 = 50\%$ and the prevalence $\mu = 0.1\%$ reported in the literature. If we assume that the disease follows an additive model A_{Δ} with these parameters, then the current set of 74 variants explain 10.8% of the phenotypic variance and 21.5% of the heritability. Under this
model, the relative risks are $\lambda_{MZ} = 54.3$ and $\lambda_s = 10.3$. We then fit an $LP_{\Delta}(3)$ model with the same prevalence μ , and relative risks, λ_{MZ} and λ_s . The model is $LP_{\Delta}(k=3,h_{pathway}^2=47.6\%,c_R=16\%,\mu=0.1\%)$. We assigned the 74 loci randomly to the 3 different pathways. Because the LP(3) model was chosen to fit the population parameters precisely, it obviously cannot be distinguished from the additive model based on the population parameters. Yet, the true heritability for the LP(3) model is only $h_{all}^2=18.7\%$ (vs 50% for the additive model) and thus the phantom heritability is $\pi_{phantom}=62.6\%$. Under this model, the known variants explain 57.5%(=10.8/18.7) of the heritability. The contribution of all loci to heritability under both models is displayed in Supp. Table 9. Above, we chose one specific set of epidemiological parameters to illustrate the problem. Different epidemiological estimates available in the literature (for prevalence, relative risk and heritability) yield different values for the total heritability and therefore for the heritability explained, as shown below in Supp. Table 3. | $\mu(\%)$ | λ_{MZ} | λ_s | Model | $h_{pathway}^2(\%)$ | $c_R(\%)$ | $h_s^2(\%)$ | $h_{all}^2(\%)$ | $V_c(\%)$ | $\pi_{phantom}(\%)$ | $\pi_{explained}(\%)$ | |--------------|----------------|-------------|------------------|---------------------------|-----------|-------------|-----------------|-----------|---------------------|-----------------------| | 0.1 (11) | 54.3 | 10.3 | A_{Δ} | 50 (11) | 0 | 10.8 | 50 | 0 | 0 | 21.5 | | | | | $LP_{\Delta}(3)$ | 47.6 | 16 | 10.8 | 18.7 | 18.2 | 62.6 | 57.5 | | $0.1^{(11)}$ | 230 | $27^{(12)}$ | A_{Δ} | 77.3 | 0 | 10.8 | 77.3 | 0 | | 13.9 | | | | | $LP_{\Delta}(3)$ | 70.1 | 34.7 | 10.8 | 27.6 | 23.7 | 64.3 | 39 | | $0.2^{(13)}$ | 35.1 | 7.92 | A_{Δ} | $_{50}^{-}$ $_{(11)}^{-}$ | 0 | 12.1 | 50 | 0 | | 24.3 | | | | | $LP_{\Delta}(3)$ | 47.6 | 17 | 12.1 | 19.1 | 19.4 | 61.9 | 63.7 | | $0.2^{(13)}$ | 250 | 35 (14) | A_{Δ} | 82.8 | 10.3 | 12.1 | 82.8 | 1.8 | 0 | 14.7 | | | | | $LP_{\Delta}(3)$ | 72.5 | 73.5 | 12.1 | 29 | 32.2 | 64.9 | 41.8 | Table 3: Cumulative assumed and actual variance explained by associated SNPs for Crohn's disease. (Source: Franke et al.¹¹). The table shows various estimates for prevalence (μ), monozygotic twin (λ_{MZ}) and sibling (λ_s) relative risks obtained from different sources. The cited sources are shown in parenthesis next to numbers in the table. h_s^2 is the total variance explained under an A_{Δ} model for the 74 known loci. For each set of parameters we fitted an additive A_{Δ} model and a non-additive LP model LP_{Δ} (3). $h_{pathway}^2$, the heritability in each pathway and c_R , the fraction of shared environment in each pathway, are the fitted model parameters. We then computed h_{all}^2 , the heritability explained by all loci, and the resulting $\pi_{explained}$ and $\pi_{phantom}$ under either the A_{Δ} or the LP_{Δ} model. While both models fit the data, the additive model has no phantom heritability and the LP_{Δ} (3) model has 60 - 65% phantom heritability. However, our results are robust to the choice of epidemiological parameters in that the phantom heritability under the $LP_{\Delta}(3)$ model is broadly similar: > 60% in all cases examined. The additive and non-additive models thus cannot be distinguished based on the relative risks to MZ twins and sibs (λ_{MZ} and λ_{sib}). We further explored whether the models can be readily distinguished based on risks to more distant relatives, such as grandchildren and first cousins (λ_g and λ_{cousin}). This turns out to be difficult due to two challenges: i. The first challenge is that one must specify the extent of shared environment for each type of relative pair. Many diseases have significant shared environment that extends beyond family households. (In particular, the risk for Crohn's disease is believed to be decrease by some environmental exposures, and may be increased by others. Another example is multiple sclerosis, which is influenced by the latitude of residence during one's first two decades of life.) We examined models where the shared environment for grandchildren and cousins is $x = c_R/c_{sib} = 25\%$, 50%, or 75% of the level for sibs. (see Table 4). | Model | $V_{c,sib}(\%)$ | λ_{MZ} | λ_{sib} | λ_g | λ_{cousin} | |--------------------------|-----------------|----------------|-----------------|-------------|--------------------| | A_{Δ} | 0 | 54.3 | 10.3 | 3.58 | 1.96 | | $LP_{\Delta}(3)(x=25\%)$ | 18.2 | 54.3 | 10.3 | 2.43 | 1.58 | | $LP_{\Delta}(3)(x=50\%)$ | 18.2 | 54.3 | 10.3 | 2.86 | 1.82 | | $LP_{\Delta}(3)(x=75\%)$ | 18.2 | 54.3 | 10.3 | 3.38 | 2.12 | Table 4: The table shows the relative risk to MZ twins, sibs, grand-children and cousins of individuals affected by Crohn's disease, according to the additive A_{Δ} and LP_{Δ} (3) models, for different levels of shared environment x for distant relatives. The shared environment variance for sibs is $c_{sib} = 16\%$ (corresponding to $V_{c,sib} = 18.2\%$). x is the ratio c_g/c_{sib} (= c_{cousin}/c_{sib}), quantifying the level of shared environment for grand-children and cousins, compared to the level of shared environment for siblings. The results show that the relative recurrence risks depend on the extent of shared environment among grandchildren and cousins. In practice, it may be difficult to achieve sufficient precision to distinguish among these models (let alone other models). ii. The second challenge is that good data are lacking concerning risks to grandchildren and cousins for Crohn's disease (and for most diseases). It is difficult to obtain data with accurate diagnosis and without ascertainment biases from sufficiently large samples to provide adequate precision. In addition, comparisons of grandparents and grandchildren may be confounded by secular trends affecting disease prevalence and environmental exposure. In summary, it is not simple to distinguish among models involving even a modest number of parameters based on a small number of observables (e.g., μ , λ_{MZ} , λ_{sib} , λ_g and λ_{cousin}). #### 6.2 Schizophrenia Using epidemiological data for schizophrenia from refs^{15,16,17} we fit both an $LP_{\Delta}(1)$ (that is, additive) and an $LP_{\Delta}(2)$ model. Since MZ risk is available for only one data set and is less reliable, we fitted the models using the sibling risk λ_s and the grand-child risk λ_g . We then examined the risk to other relatives (Supp. Table 5). Both models fit the data reasonably well (see Supp. Fig. 7 and Supp. Table 5), with the $LP_{\Delta}(2)$ model arguably showing a somewhat better fit. A striking observation from Supp. Fig. 7 is that the two models produce very small differences in the population correlations but yield a large difference in phantom heritability. The correlation among relatives follows a straight line for the A_{Δ} (additive) model and a curve that is just slightly concave up for the $LP_{\Delta}(2)$ model. Yet, the phantom heritability is 0% for the A_{Δ} (additive model) and 46% for the $LP_{\Delta}(2)$ model. This observation underscores how challenging it is to detect the presence of genetic interactions based on phenotypic correlations. | | Risch et al. 16 | A_{Δ} | $LP_{\Delta}(2)$ | Lichtenstein et al. 17 | A_{Δ} | $LP_{\Delta}(2)$ | |---|-----------------|--------------|------------------|------------------------|--------------|------------------| | Prevalence (%) | 0.85 | 0.85 | 0.85 | 0.41 | 0.41 | 0.41 | | λ_{MZ} | 52.1 | 37.2 | 44.1 | - | 37.8 | 50.3 | | λ_s | 8.6 | 8.6 | 8.6 | 8.55 | 8.55 | 8.55 | | λ_g | 3.3 | 3.36 | 3.3 | $\boldsymbol{2.95}$ | 3.29 | 2.95 | | λ_{cousin} | 1.8 | 1.91 | 1.98 | 2.29 | 1.88 | 1.7 | | $\begin{bmatrix} \bar{h}_{all}^2(\%) \end{bmatrix}$ | | 75.8 | 45.9 | | 61.7 | 40.8 | | $h_{pop}^{2}(\%)$ | - | 75.8 | 85.3 | - | 61.7 | 75.3 | | $h_{pathway}^2(\%)$ | - | 75.8 | 78.8 | - | 61.7 | 71.3 | | $c_R(\%)$ | - | 0 | 20.0 | - | 0 | 2.0 | | $V_c(\%)$ | - | 0 | 4.8 | - | 0 | 0.6 | | $\pi_{phantom}(\%)$ | - | 0 | 46.2 | - | 0 | 45.9 | Table 5: Epidemiological data and model fit for Schizophrenia. Shown are data obtained for disease prevalence (μ) and relative risk to monozygotic twins, siblings, grand-children and cousins $(\lambda_{MZ}, \lambda_s, \lambda_g, \lambda_{cousin}$ respectively) obtained from two different sources. Given the values of μ , λ_s and λ_g (shown in bold-face) from each of the two sources, we then fit two models $(A_{\Delta} \text{ and } LP_{\Delta}(2))$ and show the values of $h_{pathway}^2$, c_R , h_{all}^2 , h_{pop}^2 and $\pi_{phantom}$ associated with each model. #### 6.3 Differences among traits Under the LP model, phantom heritability increases with the number of pathways. This observation suggests that, in general, traits with greater biological complexity may have greater phantom heritability. In this context, it is interesting to observe that genetic studies tend to explain more of the apparent heritability for "simpler" traits than for more "complex" traits. For example, GWAS has explained $\sim 50\%$ of the apparent heritability for the regulation of the levels of fetal hemoglobin. By contrast, GWAS have explained much less of of the apparent heritability for arguably more "complex" traits - such as 2% for body-mass index of 19 or 10 for age of onset of menarche. These differences may reflect both the number of loci involved in the traits (indicating that many are still to be discovered) and the
physiological interactions underlying the traits (resulting in higher levels of phantom heritability). ## 7 Detecting epistasis among variants #### 7.1 Experimental evidence for epistasis in humans Despite considerable efforts, few well-replicated instances of epistasis in common human disease and trait genetics have been discovered thus far. The only examples to date involve interactions featuring at least one locus with a large marginal effect, such as HLA. We describe four examples below. Two recent GWAS, in ankylosing spondylitis²¹ and psoriasis,²² discovered interactions between two different HLA alleles and *ERAP1*. (In ankylosing spondylitis, the HLA-B27 allele has an odds ratio of 40.8, and in psoriasis the HLA-C allele has an odds ratio of 4.66.) HLA also plays a role in an interaction effect described in a GWAS of Type 1 diabetes. (In Type 1 diabetes, HLA has a main effect of 5.5, but acts non-additively with the risk of all other alleles considered cumulatively.²³) Finally, interaction between RET and EDNRB in Hirschsprung's disease was discovered in a genome-wide linkage study,²⁴ in which RET was strongly associated with disease (log-odds score of 5.6). If the magnitude of interaction effects scales with marginal effects, then current studies will only be powered to see interactions in which the main effect is large. Thus, many more epistatic interactions between loci with more modest marginal effect size (e.g. 1.1-1.5 as is typical in recent GWAS) might well exist but go undetected due to lack of power. #### 7.2 Tests for detecting associations and their power The main problem in detecting these interactions is lack of statistical power. In this section we present three tests for identifying associations between variants or their interactions and a phenotype. We then describe how to compute detection power for the three tests in a GWAS with n individuals, where we consider for simplicity that n/2 individuals are cases and n/2 are controls. We assume that the genetic architecture used to generate the data follows the LP model $LP_{\Delta}(k, h_{pathway}^2, c_R, \mu)$ for disease from before. When testing the power of specific loci (or their interactions), we need to fully specify the effect of a single locus (this is not determined by the definition of the LP_{Δ} model). For simplicity, we assume that each pathway consists of m identical loci, where each locus has a single risk allele with frequency f. For a given LP model, the frequency f and the number of loci f determine uniquely the effect of each locus on the trait (represented as genetic relative risk f), and the interactions between different loci (discussed later). We thus compute power as a function of the parameters f, f and f. The three tests we consider are - i. a test for detection of association of a single locus with disease. - ii. a test for detection of a pairwise interaction between two individual loci. - iii. a test for detection of a pairwise interaction between two pathways. In all cases, we compute power efficiently using analytical approximations, which enables us to explore a wide parameters space, including very large sample sizes (on the order of millions). We plot in Supp. Fig. 8 the detection power as function of sample size for the three tests. #### 7.3 Detecting the marginal effect of each SNP We first focused on detecting the individual variants. We used the Cochran-Armitage trend test, which detects an association between a (diploid) SNP and the value of a binary trait (e.g. disease). ^{25,26} We computed power for this test using an analytic approximation. The test statistic has an approximate chi-square distribution $\chi^2(1)$ under the null hypothesis, and a non-central chi-square distribution $\chi^2(1, NCP)$ under an alternative model. The non-centrality-parameter NCP is a function of the effect size, determined by μ , f and the genetic relative risk η , and the sample size n. To calculate NCP for a locus with risk allele frequency f and effect size η , we first need to compute the observed 2x3 joint probability table $p = \{p_{ij}\}$ for genotype and disease status, $$p_{ij} \equiv Pr(Z = i, g_{(F)} + g_{(M)} = j), \quad \forall i = 0, 1, j = 0, 1, 2$$ (7.1) where $g_{(F)}$ and $g_{(M)}$ are the paternal and maternal alleles at a given locus, respectively. The table p is a function of the parameters μ , f and η . We compute $p = \{p_{ij}\}$ in a few steps, i. We denote the joint 2x2 table of one allele and disease status in a random sample drawn from the population by p_{μ} . It is given by, $$p_{\mu,ij} = f^{j} (1 - f)^{1-j} \left[1 - \frac{\mu \eta^{j}}{1 - f + f \eta} \right]^{i} \left[\frac{\mu \eta^{j}}{1 - f + f \eta} \right]^{1-i}, \quad \forall i, j = 0, 1$$ (7.2) ii. In a balanced study design, with an equal number of cases and controls, the observed joint frequencies frequencies of the allele and disease status change to $$p_{\frac{1}{2},ij} = \frac{p_{\mu,ij}}{2\mu^i(1-\mu)^{1-i}}, \quad \forall i,j=0,1$$ (7.3) iii. We compute the genotype 2x3 table from the allele 2x2 table as, $$p_{ij} = 2^{2-|j-1|} p_{\frac{1}{2},i0}^{2-j} p_{\frac{1}{2},i1}^{j}, \quad \forall i = 0, 1, \ j = 0, 1, 2$$ $$(7.4)$$ iv. Let q_{ij} denote the *conditional* probability of genotype j given disease status i. We compute q from p as $$q_{ij} \equiv Pr(x=j|z=i) = \frac{p_{ij}}{\sum_{j'=0}^{2} p_{ij'}}$$ (7.5) v. We express the non-centrality parameter NCP in terms of the q_{ij} 's (see e.g.^{27,28}). When the number of cases and controls are equal (n/2), the formula for NCP is, $$NCP(n, f, \eta) = \frac{n\left[\sum_{i=0}^{2} i(q_{1i} - q_{0i})\right]^{2}}{2\sum_{i=0}^{2} i^{2}(q_{0i} + q_{1i}) - \left[\sum_{i=0}^{2} i(q_{0i} + q_{1i})\right]^{2}}$$ (7.6) We next write an explicit expression for the power in terms of the non-centrality parameter using the χ^2 distribution. We denote by $F_{\chi^2}(x;d,NCP)$ the cumulative non-central χ^2 distribution function with d degrees of freedom and non-centrality parameter NCP at the value x (that is, the probability that a $\chi^2(d,NCP)$ random variable is smaller than x). When NCP is omitted, $F_{\chi^2}(x;d)$ denotes the central χ^2 distribution. $F_{\chi^2}^{-1}$ is simply the inverse χ^2 cumulative distribution function. With this notation, the power is, $$Power(n, f, \eta, \alpha) = 1 - F_{\chi^2} \left(F_{\chi^2}^{-1} (1 - \alpha; 1); 1, NCP(n, f, \eta) \right)$$ (7.7) that is, the power is the area under the (true) alternative non-central χ^2 distribution to the right of the value $F_{\chi^2}^{-1}(1-\alpha;1)$, which is the expected $1-\alpha$ quantile under the (null) central χ^2 distribution. We used significance level $\alpha = 5 \times 10^{-8}$, a figure often used in GWAS for genome-wide significance. #### 7.4 Detecting interaction between a pair of SNPs We next focused on detecting pairwise interactions between individual variants. We tested for deviations from the A_{Δ} model for a pair of identified loci. Specifically, for two loci g_1 and g_2 , and a trait z (all three are binary 0/1 variables) we compute the expected and observed joint 2x2x2 tables $p_{ij_1j_2}^{(A_{\Delta})}$, $p_{ij_1j_2}^{(LP)}$, obtained under the (false) null model A_{Δ} and the (true) alternative model LP, respectively. In a sample drawn at random from the population, the expected joint 2x2x2 table $p_{\mu,ij_1j_2}^{(A_{\Delta})}$ under the A_{Δ} model is, $$p_{\mu,ij_1j_2}^{(A_{\Delta})} = Pr(Z = i, g_1 = j_1, g_2 = j_2) =$$ $$f^{j_1+j_2}(1-f)^{2-j_1-j_2} \left[1 - \Phi(\tau - \frac{\beta g_1' + \beta g_2'}{\sqrt{1-2h^2}}) \right]^i \Phi(\tau - \frac{\beta g_1' + \beta g_2'}{\sqrt{1-2h^2}})^{1-i}$$ (7.8) where β is the effect size of each of the genotypes under the A_{Δ} model, computed from from f, η and μ by solving eq. (2.7) for β (with $\tau(\mu) = \Phi^{-1}(\mu)$), and $g'_i = h_i - f$ are the normalized genotypes. The observed 2x2x2 table $p_{\mu,ij_1j_2}^{(LP)}$ under the (true) LP model is, $$p_{\mu,ij_1j_2}^{(LP)} = Pr(Z = i, g_1 = j_1, g_2 = j_2) =$$ $$f^{j_1+j_2}(1-f)^{2-j_1-j_2} \left[1 - \Phi(\tau)^{k-2} \Phi(\tau - \frac{\beta g_1}{\sqrt{1-h^2}}) \Phi(\tau - \frac{\beta g_2}{\sqrt{1-h^2}}) \right]^i$$ $$\left[\Phi(\tau)^{k-2} \Phi(\tau - \frac{\beta g_1}{\sqrt{1-h^2}}) \Phi(\tau - \frac{\beta g_2}{\sqrt{1-h^2}}) \right]^{1-i}$$ (7.9) In a balanced study, with equal number of cases and controls, the above two tables change. $$p_{ij_1j_2}^{(A_{\Delta})} = \frac{p_{\mu,ij_1j_2}^{(A_{\Delta})}}{2\mu^i(1-\mu)^{1-i}}; \quad p_{ij_1j_2}^{(LP)} = \frac{p_{\mu,ij_1j_2}^{(LP)}}{2\mu^i(1-\mu)^{1-i}}$$ (7.10) The non-centrality parameter is, $$NCP_2(n, f, \eta) = n \sum_{i, j_1, j_2} \frac{(p_{ij_1 j_2}^{(LP)} - p_{ij_1 j_2}^{(A_{\Delta})})^2}{p_{ij_1 j_2}^{(A_{\Delta})}}$$ (7.11) and power is given via the χ^2 approximation (in similar to eq. (7.7)), $$Power_2(n, f, \eta, \alpha) = 1 - F_{\chi^2} \left(F_{\chi^2}^{-1}(1 - \alpha; 1); 1, NCP_2(n, f, \eta) \right)$$ (7.12) We used a significance level α that accounts for the multiplicity testing among all pairs of loci, $\alpha = 0.01/\binom{km}{2}$. #### 7.5 Detecting interaction between two pathways In principle, the power to detect genetic interactions might be increased by looking at the aggregate effects of sets of genes. One possibility which we describe below would be to place genes into relevant sets (for example, common pathways) and test for "meta-interactions" between these sets. Substantial biological knowledge about the underlying physiology might be required to organize the genes into pathways and infer key aspects of the genetic architecture. Nevertheless, we devised a test to detect interactions between the two pathways, under the assumption that a subset of the loci in the two pathways are known and can be correctly assigned to the two pathways. We assume that in each pathway
Ψ_i multiple loci with small effects were detected. We denote the set of detected loci as S_i . Thus, in similar to eq. (3) in the main text, the i-th pathway can be partitioned as: $$\Psi_i = x_i + y_i + \epsilon_R + \epsilon_u \tag{7.13}$$ where $x_i = \sum_{j \in S_i} \beta_j g_{i,j}$ and $y_i = \sum_{j \in \bar{S}_i} \beta_j g_{i,j}$ denote the additive contribution of the detected and undetected loci in pathway i, respectively. We model the additive contributions of detected loci as a Gaussian $x_i \sim N(0, h_{i,known}^2)$ that explains $h_{i,known}^2$ of the total variance of the pathway Ψ_i . We test for an interaction between the detected loci in two pathways. For simplicity we assume these are (x_1, x_2) , representing interaction between the first two pathways. In a balanced case-control study, the available data are a collection of n triplets (x_1, x_2, z) for each individual. x_1 and x_2 are two real numbers, representing the additive contribution of all loci in a given pathway, and z is a binary variable representing disease state (with z=1 or z=0 in equal numbers of individuals). Under the null hypothesis, the A_{Δ} model is correct, and the probability of disease is $Pr(Z=1|x_1,x_2)=\Phi(\beta_0+\beta_1x_1+\beta_2x_2)$. Since the correct architecture would not be known in advance, we performed a goodness-of-fit test for the A_{Δ} model. We divided the (x_1,x_2) plane into L^2 equi-probable regions R_{ij} . To avoid bins with few counts, we chose the value of L such that on average, each bin will have at least 50 data points, $$L = \lfloor \sqrt{n/50} \rfloor \tag{7.14}$$ We then computed the bin boundaries as the quantiles of the standard Gaussian distribution function, $$b_0 = -\infty, \ b_L = \infty, \quad b_i = \Phi^{-1}(i/L) \ \forall i = 1, ..., L - 1$$ (7.15) In each such region, we compared the observed number of diseased individuals O_{ij} , to the expected number under the A_{Δ} model, $E_{ij}^{(A_{\Delta})}$. The goodness-of-fit test statistic measures the deviations of O_{ij} from $E_{ij}^{(A_{\Delta})}$, $$S = \sum_{ij} \frac{\left(O_{ij} - E_{ij}^{(A_{\Delta})}\right)^2}{E_{ij}^{(A_{\Delta})}} \tag{7.16}$$ We compute the observed value O_{ij} in each bin as, $$O_{ij} = \sum_{l} z_l \cdot 1_{\{x_{1,l} \in [b_{i-1}, b_i], x_{2,l} \in [b_{j-1}, b_j]\}}$$ $$(7.17)$$ where the sum is on affected individuals $(z_l = 1)$ whose known liabilities $x_{1,l}, x_{2,l}$ are in the *i*th and *j*th bins, respectively. We compute the expected number of affected individuals $E_{ij}^{(A_{\Delta})}$ in the bin by integrating over the densities of each x_i , and for each (x_1, x_2) pair writing the expected value of the disease status variable z, $$E_{ij}^{(A_{\Delta})} = \frac{\int_{x_1=b_{i-1}}^{b_i} \int_{x_2=b_{j-1}}^{b_j} Pr(x_1, x_2, z=1) dx_1 dx_2}{\int_{x_1=b_{i-1}}^{b_i} \int_{x_2=b_{j-1}}^{b_j} Pr(x_1, x_2) dx_1 dx_2} =$$ $$L^{2} \int_{x_{1}=b_{i}}^{b_{i+1}} \int_{x_{2}=b_{j}}^{b_{j+1}} \varphi(x_{1})\varphi(x_{2})\Phi\left(\tau - \frac{(x_{1}+x_{2})h_{i,known}}{\sqrt{1-2h_{i,known}^{2}}}\right) dx_{1}dx_{2}$$ $$(7.18)$$ Under the null-hypothesis, S has an approximate chi-square distribution, $S \sim \chi^2(L^2)$. Under the alternative, S has a non-central chi-square distribution $S \sim \chi^2(L^2, NCP)$. The non-centrality parameter NCP, measuring the (expected) deviation of O_{ij} from its expectation under the (wrong) A_{Δ} null model, $E_{ij}^{(A_{\Delta})}$, is given by the formula, $$NCP_{path} = \sum_{i,j} \frac{\left(E_{ij}^{(LP)} - E_{ij}^{(A_{\Delta})}\right)^2}{E_{ij}^{(A_{\Delta})}(1 - E_{ij}^{(A_{\Delta})})}$$ (7.19) where $E_{ij}^{(LP)} = E[O_{ij}]$ is the expected number of disease individuals in bin (i, j) under the alternative (true) LP model. The formula for $E_{ij}^{(LP)}$ under the alternative LP model is (compare to eq. (7.18)), $$E_{ij}^{(LP)} = L^2 \int_{x_1 = b_{i-1}}^{b_i} \varphi(x_1) \Phi\left(\tau - \frac{x_1 h_{i,known}}{\sqrt{1 - h_{i,known}^2}}\right) dx_1 \int_{x_2 = b_{j-1}}^{b_j} \varphi(x_2) \Phi\left(\tau - \frac{x_2 h_{i,known}}{\sqrt{1 - h_{i,known}^2}}\right) dx_2$$ (7.20) Using this approximation, we computed power as the tail probability under the non-central chi-square distribution, in similar to eq. (7.7): $$Power_{path}(n, h_{i,known}^{2}, \alpha) = 1 - F_{\chi^{2}} \Big(F_{\chi^{2}}^{-1}(1 - \alpha; L^{2}); L^{2}, NCP_{path}(n, h_{i,known}^{2}) \Big)$$ (7.21) We used a significance level α accounting just for multiplicity in testing all pairs of *pathways*, $\alpha = 0.01/\binom{k}{2}$. # 8 Consistent estimator $h^2_{\mathbf{slope}(\kappa_0)}$: Proof of Theorem 1 In the main text, we describe a top-down estimator $h_{\text{slope}(\kappa_0)}^2$ for h_{all}^2 that is provably consistent even in the presence of genetic interactions. In this section, we provide the proof. Our estimator is based on observing how the phenotypic correlation between individuals varies with the proportion of their genomes in large IBD segments. A few important definitions and comments: - By a "large IBD segment", we mean a segment that is identical-by-descent (having descended from a recent common ancestor) and exceeds a specified threshold L in length (measured in centimorgans). The threshold L determines the expected number N_g of generations to the common ancestor. - By the IBD-sharing level between two individuals, we mean the probability that a randomly chosen genomic position on homologous chromosomes from each of the individuals lies in a large IBD segment shared by the two individuals. Thus IBD sharing takes values between 0 and 1. - Large IBD segments can be readily recognized by virtue of two individuals sharing alleles at a large number of consecutive markers across a region. Several algorithms for detecting large IBD segments have been described recently.^{29,30,31} By focusing on large IBD segments, we ensure that the segments have a recent common ancestor. This avoids the issues with defining and identifying small IBD segments discussed by Powell et al.³¹ - We will assume that large IBD segments are genetically identical at the causal loci within the segment. Rarely, apparently IBD segments will have different alleles at a causal locus if a new mutation has occurred since the common ancestor. Our estimate of h_{all}^2 will therefore exclude heritability due to such extremely recent mutations. In practice, the probability-pergeneration of new mutations is extremely low ($\sim 2 \times 10^{-8}$), and the total probability of new mutations since the common ancestor can be bounded (as noted above, the length threshold L sets the expected number N_g of generations to the common threshold). Extremely new mutations could play a significant role only if the alleles responsible for a trait (i) largely act dominantly and (ii) have extremely high selective coefficients, so that they are eliminated extremely rapidly from the population. #### 8.1 Heritability on the observed scale We now turn to the proof of Theorem 1. The theorem applies to both quantitative traits and to disease traits, when measured on the observed (0,1) scale. **Theorem 1** Consider a population in which one can detect large segments shared IBD between individuals. Given individuals I_1 and I_2 , let $\kappa = \kappa(I_1, I_2)$ denote the proportion of their genomes shared in large IBD segments. Let κ_0 denote the average value of κ across the pairs in the population. For a trait $Z = \Psi(G, E)$, let $\rho(\kappa)$ denote the average phenotypic correlation between pairs of individuals who share proportion κ of their genomes in large IBD blocks. Define the "heritability at unrelatedness", $h_{slope(\kappa_0)}^2 = (1 - \kappa_0)\rho'(\kappa_0)$. Then, regardless of the genetic architecture of the trait, $$h_{slope(\kappa_0)}^2 = h_{all}^2 \tag{8.1}$$ In other words, the true heritability, h_{all}^2 , equals $(1 - \kappa_0)$ times the rate of change of phenotypic correlation around the average level of IBD-segment sharing, $\rho'(\kappa_0)$. Thus, if $\rho'(\kappa_0)$ is a consistent estimator of $\rho'(\kappa_0)$, obtained from pairwise genotypic and phenotypic similarities in a population sample, then $h_{slope(\kappa_0)}^2 = (1 - \kappa_0) \rho'(\kappa_0)$ is a consistent estimator of h_{all}^2 . **Proof:** We will consider the distribution of genotypes and phenotypes for pairs (I_1, I_2) of individuals in the population, conditional on their degree of IBD sharing. For individual I_j (for j = 1, 2), we will denote the genotype by $G_j = (g_{j1}, g_{j2}, ..., g_{jn})$ and the phenotype by $Z_j = \Psi(G_j, E_j)$. To simplify the proof, we will write the variant loci on the maternally and paternally inherited genomes separately, so that each genotype g_{ji} is a binary variable. i. Genotypic correlation. Let $\vartheta(\kappa)$ denote the conditional probability distribution on pairs (G_1, G_2) of genotypes, conditional on the individuals having average IBD sharing level κ . (That is, $\vartheta(\kappa)[(G_1, G_2)]$ denotes the conditional probability of the genotype (G_1, G_2) .) In particular, $\vartheta(\kappa_0)$ is the background distribution for the whole population, in which G_1 and G_2 are independent. We similarly let $\vartheta_i(\kappa)$ denote the conditional probability distribution over pairs (g_{1i}, g_{2i}) of genotypes at the i-th locus, conditional on the individuals having average IBD sharing level κ . Because the variant sites are assumed to be in linkage equilibrium, $\vartheta(\kappa)$ is the product of the distributions $\vartheta_i(\kappa)$: $$\vartheta(\kappa)[(G_1, G_2)] = \prod_{i=1}^n \vartheta_i(\kappa)[(g_{1i}, g_{2i})]$$ (8.2) We can express $\vartheta_i(\kappa)$ as a mixture of the distribution $\vartheta_i(1)$, conditional on IBD-sharing at the i-th locus and the distribution $\vartheta_i(0)$, conditional on
non-IBD-sharing at the i-th locus: $$\vartheta_i(\kappa) = \kappa \vartheta_i(1) + (1 - \kappa)\vartheta_i(0). \tag{8.3}$$ One can then show that, $$\vartheta_i(\kappa_0 + \epsilon) = \frac{\epsilon}{1 - \kappa_0} \vartheta_i(1) + \left(1 - \frac{\epsilon}{1 - \kappa_0}\right) \vartheta_i(\kappa_0). \tag{8.4}$$ (To see this, write eq. (8.3) for $\vartheta_i(\kappa_0)$ and for $\vartheta_i(\kappa_0 + \epsilon)$. Solve for $\vartheta_i(0)$ in eq. (8.3) for $\vartheta_i(\kappa_0)$ and substitute it in eq. (8.3) for $\vartheta_i(\kappa_0 + \epsilon)$.) For notational convenience below, we will rewrite eq. (8.4) as $$\vartheta_i(\kappa_0 + \epsilon) = \frac{\epsilon}{1 - \kappa_0} \vartheta_i^*(1) + \left(1 - \frac{\epsilon}{1 - \kappa_0}\right) \vartheta_i^*(0) \tag{8.5}$$ where $\vartheta_i^*(1) = \vartheta_i(1)$ and $\vartheta_i^*(0) = \vartheta_i(\kappa_0)$. Using the equations above, we have: $$\vartheta(\kappa_0 + \epsilon) = \prod_{i=1}^n \vartheta_i(\kappa_0 + \epsilon) = \prod_{i=1}^n \left[\frac{\epsilon}{1 - \kappa_0} \vartheta_i^*(1) + \left(1 - \frac{\epsilon}{1 - \kappa_0}\right) \vartheta_i^*(0) \right] = \sum_{T=(t_1, t_2, \dots, t_n) \in \mathbb{Z}_2^n} \left[\frac{\epsilon}{1 - \kappa_0} \right]^{w(T)} \left[1 - \frac{\epsilon}{1 - \kappa_0} \right]^{n-w(T)} \prod_{i=1}^n \vartheta_i^*(t_i)$$ (8.6) where \mathbb{Z}_2^n is the set of binary vectors of length n and w(T) is the number of non-zero entries in the vector T. ii. Phenotypic correlation. Consider the phenotypic correlation for individuals with IBD sharing level κ . Because Z_1 and Z_2 have expected value 0, we have: $$\rho(\kappa) = E_{\vartheta(\kappa)}[Z_1 Z_2] = \sum_{(G_1, G_2)} \vartheta(\kappa)[(G_1, G_2)] E[Z_1 Z_2 | G_1, G_2]. \tag{8.7}$$ where E_D denotes the expectation under the distribution D. We want to calculate the derivative $\rho'(\kappa_0)$. To calculate $\rho'(\kappa_0) = \frac{d}{d\epsilon}\vartheta(\kappa_0 + \epsilon)|_{\epsilon=0}$, we examine eq. (8.6) as $\epsilon \to 0$. Because all terms corresponding to vectors T with w(T) > 1 have derivative 0 at κ_0 , we have: $$\rho'(\kappa_0) = \frac{1}{1 - \kappa_0} \left[-n\vartheta(\kappa_0) + \sum_{i=1}^n \vartheta(T_i) \right]$$ (8.8) where T_i is the vector that is all zero except at position i. We thus have $$\rho'(\kappa_0) = \frac{1}{1 - \kappa_0} \left[-nE_{\vartheta(\kappa_0)}[Z_1 Z_2] + \sum_{i=1}^n E_{\vartheta(T_i)}[Z_1 Z_2] \right]$$ (8.9) We need two facts. First, we have $E_{\vartheta(\kappa_0)}[Z_1Z_2] = 0$. This holds because Z_1 and Z_2 are independent under $\vartheta(\kappa_0)$, which is the unconditional background distribution for the population. Second, $E_{\vartheta(T_i)}[Z_1Z_2] = V_i$, where V_i is the additive variance explained by the i-th variant. This follows because $$E_{\vartheta(T_i)}[Z_1Z_2] = E[Z_1Z_2|g_{1i} = g_{2i}] = \sum_j Pr(g_{1i} = j)E[Z_1|g_{1i} = j]^2 = E[Z^2] - Var[Z|g_i] = V_i.$$ (8.10) where we have used the facts that (i) when the two individuals share only the i-th variant by descent, Z_1 and Z_2 are conditionally independent given the value of g_i , and (ii) $E[y]^2 = E[y^2] - Var[Y]$ for any random variable y. Finally, we have: $$\rho'(\kappa_0) = \frac{1}{1 - \kappa_0} [0 + \sum_{i=1}^n V_i] = \frac{1}{1 - \kappa_0} V_A = \frac{1}{1 - \kappa_0} h_{all}^2.$$ (8.11) Some notes concerning Theorem 1: - The proof makes no assumption on the genetic architecture of the trait: it may involve dominance at a locus or genetic interactions among loci. (By denoting maternal and paternal alleles separately, dominance is simply a special case of a genetic interaction that is, between the maternal and paternal alleles at a locus.) - The proof makes no assumption that IBD blocks contain only a single causal variant. - The proof assumes that the proportion of genome shared in large IBD blocks can be measured accurately. Because we restrict attention to "large" IBD blocks (exceeding a specified threshold length L), identity-by-descent can be reliably detected by virtue of allele sharing at a large number of consecutive genetic loci. The precise boundaries of the IBD block may not be measured perfectly, because small regions of IBS sharing at the edge of the block may be inaccurately scored as IBD. This will introduce some noise in the estimate. However, the proportional impact on the overall estimate of IBD sharing is expected to be small for large IBD blocks and could be eliminated by using complete genome sequence information. #### 8.2 Ascertainment bias in Case-Control studies Theorem 1 provides a consistent estimator of the heritability for both quantitative and disease traits, provided that the slope is measured in a representative sample from the population. For disease traits, it is typical to use case-control studies, where the proportion of cases is larger than the proportion in the population. Using a non-representative sample creates a bias in the derivative ρ' that must be corrected. Suppose that a disease has prevalence μ , and we use a case-control study in which the proportion of affected individuals is μ_{cc} . As shown in ref.³², the derivative in a representative sample, $\rho'(\kappa)$, is related to the derivative calculated in the case-control study, $\rho'_{cc}(\kappa)$, by the following formula: $$\rho'(\kappa) = \frac{\mu(1-\mu)}{\mu_{cc}(1-\mu_{cc})} \rho'_{cc}(\kappa) \tag{8.12}$$ #### 8.3 Heritability on a hidden liability scale As discussed in Section 2, geneticists often assume that disease traits arise from a liability threshold model. They typically compute heritability not on the observed disease scale, but rather with respect to the unseen liability scale. In the special case in which the liability is a strictly additive function of the genotypes that has a normal distribution, there is a simple conversion between the heritability on the disease and liability scales:⁴ $$h_S^2 = \frac{\mu(1-\mu)}{\varphi(x_\mu)^2} h_{S,\Delta}^2 \tag{8.13}$$ where S is a set of variants, h_S^2 is the heritability on the liability scale attributable to the variants in S, $h_{S,\Delta}^2$ is the heritability on the disease scale attributable to the variants in S, μ is the disease prevalence, $x_{\mu} = \Phi^{-1}(1 - \mu)$ is the threshold and φ is the standard Gaussian density function. Geneticists like to use the liability scale when estimating the total additive heritability, because calculations on the liability scale tend to be less sensitive to uncertainty about the precise prevalence. However, the choice of scale is irrelevant when calculating the $fraction \frac{h_{known}^2}{h_{all}^2}$ of the total additive heritability explained by a set of known loci (inasmuch as the formula above involves multiplying the numerator and denominator by the same constant). Importantly, the formula above does not hold in general when the liability function is not additive and normal. When considering traits that may involve additive interactions, it thus makes sense to calculate $\pi_{explained} = \frac{h_{known}^2}{h_{all}^2}$ on the disease scale. ## 9 Applying the theorem in practice To apply the theorem in practice, we would proceed as follows: - i. For each pair of individuals in a sample of size n, calculate the pairwise phenotypic product matrix $\rho(i,j)$ (defined as the product $Z_1 \times Z_2$ of the (normalized) phenotypes) and the pairwise IBD-sharing matrix B(i,j) (defined as the proportion of the genotype inferred to be in "large" segments, based on dense genotype information and an appropriate definition of "large"). - ii. For a window size ϵ , regress the values of $\rho(i,j)$ on B(i,j) for those pairs (i,j) of individuals with IBD sharing in the interval $[\kappa_0 \epsilon, \kappa_0 + \epsilon]$. (Ideally, one should use a weighted generalized least-square regression so that (i) equal weight is attached to each value of κ , and (ii) correlations in the $\rho(i,j)$ values for different pairs are taken into account.) - iii. Determine the slope β and set $h_{all}^2 = (1 \kappa_0)\beta$. While Theorem 1 applies to the limit as $\epsilon \to 0$, two considerations must be balanced in practice: On the one hand, if ϵ is too small, there will be too few pairs to obtain a good estimate. On the other hand, if ϵ is too large, the value may not agree with the limit as $\epsilon \to 0$. In fact, the error in the slope is $O(\epsilon^2)$ and thus is not overly sensitive to ϵ . In practice, one would examine multiple values of ϵ . #### 9.1 Heuristic formula for variance of slope We give a heuristic formula for the variance of our estimate of the slope β , as a function of the number of individuals n. We first recall standard facts on slope estimation in linear regression. Consider the linear model $$Y = \beta_0 + \beta_1 X + \xi \tag{9.1}$$ where $\xi \sim N(0, \sigma_{\xi}^2)$ is a noise variable, and the error variables ξ are independent Gaussian random variables. Under this model, one can obtain an estimator $\hat{\beta}$ for the slope β_1 using standard least squares. The distribution of the estimator $\hat{\beta}$ when observing m independent observations (x_i, y_i) can be explicitly written as, $$\hat{\beta} \sim N(\beta_1, \frac{\sigma_{\xi}^2}{\sum_{i=1}^m (x_i - \bar{x})^2})$$ (9.2) When m is large, the variance is approximately $$Var[\hat{\beta}] = \frac{\sigma_{\xi}^2}{m\sigma_x^2} \tag{9.3}$$ We can apply the approximate formula in eq. (9.3) to our situation of regressing $\rho(i,j)$ on B(i,j). First, we estimate the variance of Z_1Z_2 for individuals with a given IBD sharing level near κ_0 to be similar to the variance of Z_1Z_2 for individuals whose expected IBD sharing level is κ_0 , which is equal to 1 (since Z_1 and Z_2 are independent in this case). Second, we define $\alpha(\epsilon)$ to be the proportion of pairs with IBD sharing in
the interval $[\kappa_0 - \epsilon, \kappa_0 + \epsilon]$. Since we have n individuals, the number of pairs of individuals with IBD in the interval is $M(\epsilon) = \alpha(\epsilon) \binom{n}{2}$. Third, we define $\sigma_{IBD}(\epsilon)$ to be the standard deviation of IBD sharing for pairs of individuals with IBD sharing in the interval $[\kappa_0 - \epsilon, \kappa_0 + \epsilon]$. With these definitions, the variance of $\hat{\beta}$ should be approximately $$Var[\hat{\beta}] = \frac{1}{\alpha(\epsilon)\binom{n}{2}\sigma_{IBD}(\epsilon)^2}$$ (9.4) And $$\sigma[\hat{\beta}] \sim \frac{\sqrt{2}}{\sqrt{\alpha(\epsilon)} n \sigma_{IBD}(\epsilon)} \tag{9.5}$$ Since our estimate for h_{all}^2 is $(1 - \kappa_0)\hat{\beta}$, the variance of our estimate is $(1 - \kappa_0)\sigma[\hat{\beta}]$. #### 9.2 Simulation We applied the theorem to simulated data to examine its performance. We did not attempt to create a fully realistic model of IBD relationships in an isolated population, but instead used a simple model as follows: We assume a current population of n individuals originated from a founding population of n_F different founders, who themselves did not share any large IBD blocks. We thus mark each of the founding genomes with a distinct "color". We designate n_c causal variant sites in the genome and designate certain colors at each site to indicate the presence of a risk allele (with the choice made so as to achieve a specified risk-allele frequency.) We generate modern genomes as a mosaic of the founding genomes, with an average of n_b recombination events. We generate a phenotype for each individual based on the genotype at the causal variants and on the phenotype function Ψ . We calculate the IBD relationships between individuals based on their genotypes, where IBD blocks are regions with the same color. We generated data for a quantitative trait following the P^* model (= LP(4,50%)), with 1000 causal variants with risk-allele frequency f=50%. We assumed a founding a population of 28 individuals and a recombination density of 23 events. These values were chosen such that the mean and standard deviation of the resulting IBD distribution (3.6% and 4.0%) are roughly similar to that observed in the Qatari population (3.6% and 4.0%) (data kindly provided by Haley Hunter-Zinck and Andrew Clark³³). The true heritability for the P^* model is $h_{all}^2 = 25.4\%$. When we performed 100 simulations with samples of 1000 individuals, the estimated values in various windows around the mean were very close to the true values (for example, 0.258 ± 0.082 for $\epsilon = 0.036$). Estimates were similar for values of ϵ that cover more than $\sim 20\%$ of the pairs. We also performed simulations for other population parameters, which were consistent with the result in Theorem 1. Detailed simulations to study the performance characteristics of the estimate would best be performed using actual genotype data from real populations. # 10 Estimator based on slope of variation in IBD sharing among sibs Visscher et al.³⁴ proposed estimating heritability by regressing phenotypic correlation between sibs on their level of IBD sharing. The notion is premised on the fact that the level of IBD sharing varies around the mean of 50%, with a standard deviation of $\sim 4\%$. The estimator has the attraction that it compares pairs of individuals of the same familial relationships (that is, sibs) and thus, unlike estimates based on comparisons among different types of relatives, is not confounded by differences in shared-environment components among relative types. We will refer to this estimator as $h_{\text{slope(sib)}}^2$. The problem with the estimator $h_{\text{slope(sib)}}^2$ is that it is not consistent. One can see this in two ways: - i. Mathematically, one can see by examining the proof of Theorem 1 that the value of $\rho'(\kappa)$ for $\kappa > \kappa_0$ has additional positive terms (arising from interactions) and thus over-estimates h_{all}^2 . - ii. Empirically, one can simply calculate the value of $h_{\rm slope(sib)}^2$ for a specific model and show that $h_{\rm slope(sib)}^2 > h_{all}^2$. For P^* (the LP(4) model discussed above), we can calculate that $h_{pop}^2(ADE) = 79.2\%, h_{pop}^2(PO) = 70.9\%, h_{pop}^2(ACE) = 54.0\%, h_{\rm slope(sib)}^2 = 30.5\%$ and $h_{all}^2 = 25.4\%$. The phantom heritability associated with $h_{\rm slope(sib)}^2$ is thus lower than the phantom heritability associated with the traditional estimators, it is still 16.7% = (30.5 25.4/25.4). ## 11 Arguments advanced in support of additivity Various authors (such as Hill et al.⁹) have proposed arguments in support of the notion that genetic interactions play little role in complex traits. We briefly discuss these arguments, pointing out the flaws. #### 11.1 Allele frequencies Hill et al.⁹ assert that genetic theory implies that complex traits will have largely additive variance. Specifically, they state that (a) most variants in a large population will have extremely low minor allele frequency and (b) traits caused by low-frequency alleles will not have substantial variance due to interactions. Their claim is wrong, because the LP models (a) can have substantial variance due to interactions (indeed, the majority) and yet (b) can involve any class of allele frequencies. (Specifically, LP models are defined as the minimum value of a set of traits, each of which is additive and normally distributed. There is no constraint on the allele frequencies of the variants that sum to yield these additive and normally distributed traits.) What then is the flaw in Hill et al.'s argument? - i. Hill et al.⁹ consider only two-locus models rather than multi-locus models. (They examine a 10-locus model, but 8 of the loci are monomorphic, so the model is equivalent to a two-locus model.) Multi-locus models have much greater opportunity for genetic interactions, because n loci have n(n-1)/2 potential interactions. (Hill et al. actually discuss a single multi-locus model: their "duplicate factor" model. Notably, this model shows huge (100%) interaction variance, but they argue that "such extreme models" are not compatible with observed data.) - ii. The main problem with the argument, however, is more fundamental. We discuss it for their two-locus models (although the reasoning applies to multi-locus models as well). Hill et al. 9 carry out detailed calculations for various two-locus models, calculating the expected values of the interaction variance V_{AA} , under the "U"-shaped allele-frequency distribution expected in large populations. Their argument boils down to the following: - Consider two loci with alleles A, a and B, b, where the first allele is the major allele. - As the population grows, the allele frequencies of a and b tend to zero. (That is, the loci tend toward monomorphism.) - As the allele frequencies of a and b tend to zero, three (of the nine possible) genotypes dominate the population (AABB, AABb, AaBB). - As these three genotypes dominate the population, the ratio of the interaction variance to the total genetic variance V_{AA}/V_G tends to zero (since there can be no interaction terms with only three states and two variables). The problem with this reasoning is: As the population grows (and the typical locus tends toward monomorphism), typical traits involving typical loci become very boring! They not only have low interaction variance V_{AA} , they also have very low total genetic variance V_G . That is, the typical trait doesn't vary much in the population! In effect, Hill et al.'s theory thus actually describes what happens for *rare* traits caused by a few *rare* variants. Not surprisingly, interactions account for a small proportion of the variance for such traits. Hill et al.'s model, however, is not pertinent to common traits. The *interesting* complex traits are those that have significant genetic variance in the population: these traits necessarily have higher allele frequencies (assuming they depend only on a few, e.g. two loci) and thus, under Hill et al.'s analysis, can involve larger interaction variance and a higher ratio V_{AA}/V_G . (We illustrate this point in Supp. Fig. 9, where we analyze the first two-locus model in Hill et al.⁹ In the example, we have $V_{AA}/V_G > 50\%$, 20% and 10% for minor allele frequencies > 27%, 14% and 8%, respectively. The cases with very low interaction variance have much lower-than-average genetic variance.) #### 11.2 Breeder's equation Breeder's have long successfully employed the so-called "breeder's equation", which states that the response to selection scales linearly with the strength of selection, over generations. Some authors appear to believe that a roughly linear response to selection implies that the trait itself has an additive architecture. However, this is false. The breeder's equation is $$\Delta \mu = A \Delta s \tag{11.1}$$ where Δs denotes the average phenotypic shift of the parents selected for breeding (relative to the population mean) and $\Delta \mu$ denotes the average phenotypic shift of the resulting offspring. The coefficient A is determined by the correlation between mid-parents and offspring phenotypes - that is, by the slope of the regression line for these quantities. It is frequently referred to as the "heritability". More precisely, A is the top-down quantity $h_{pop}^2(PO)$, which does not necessarily equal the narrow-sense heritability h_{all}^2 . The equation can be mathematically proven to hold exactly in the case of a strictly additive trait. However, importantly, it also holds approximately for a wide range of non-additive traits. Specifically, the equation will hold whenever the mid-parent and offspring phenotypes are linearly related across a wide range of values. (That is, they are distributed along a regression line - whose slope is, by definition, $h_{pop}^2(PO)$.) If we select parents with
an average phenotypic shift of Δs , then their offspring will have an average phenotypic shift of $h_{pop}^2(PO)\Delta s$. This relationship will continue to hold across generations of selection, provided that the points largely lie in the linear range of parent-offspring correlation. For typical LP traits, parent-offspring values fall along a regression line despite the fact that the LP models involve interactions. The case of $P^* = LP(4, 50\%, 50\%)$ model is illustrated in Supp. Fig. 10. The model itself is highly non-linear $(h_{all}^2 = 25.4\%, h_{pop}^2(PO) = 70.8\%)$, yet the relation between the mid-parent value and the offspring value is very close to linear. We performed a computer simulation on this trait (Supp. Fig. 11). For various selection cutoffs T, we randomly selected genotypes for parents conditional on both having phenotype > T and calculated the value of the phenotype for an offspring. We confirmed that (i) the response to selection is indeed very nearly linear in the strength of selection and (ii) the slope is very close to the apparent heritability $h_{pop}^2(PO) = 70.8\%$, but far from the true heritability $h_{all}^2 = 25.4\%$. #### 11.3 Observed sibling correlations As evidence that quantitative traits fit an additive model, some authors have cited the observation that the observed median value of $r_{MZ} - 2r_{DZ}$ across traits is centered around zero. For example, Hill et al.⁹ note that the median value of $(r_{MZ} - 2r_{DZ})$ for 86 quantitative traits is close to zero. They suggest that this observation provides support for an additive model. We do not find this argument persuasive for two reasons. First, the observed value of $(r_{MZ} - 2r_{DZ})$ actually varies widely (from -0.50 to +0.30) - much more widely than appears to be consistent with sampling error. Second, shared environment is known to be important for many traits. For a strictly additive trait, shared environment will cause $(r_{MZ} - 2r_{DZ})$ to be negative. The fact that $(r_{MZ} - 2r_{DZ})$ is observed to be centered around zero could thus be taken as a case for the presence of genetic interactions, because genetic interactions would increase $(r_{MZ} - 2r_{DZ})$ and thus offset the effects of shared environment. In short, the empirical data are not compelling. # 12 Supplementary code We have implemented the calculations used in the paper in a Matlab software package. The package provides functions for computing heritability for non-additive models (e.g. the LP models), functions for computing detection power for different tests for epistasis, functions for simulating populations with IBD structure and for computing our estimator $h_{\text{slope}(\kappa_0)}^2$, and many additional utilities. The package is available at www.broadinstitute.org/mpg/hc, with a readme file providing explanations for the different functions. Please refer any questions to orzuk@broadinstitute.org. ### References - M. Lynch and B. Walsh. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Inc., 1998. - 2. D.S. Falconer and T.F.C. Mackay. Introduction to quantitative genetics (4th edn.). - 3. F. Galton. Regression towards mediocrity in hereditary stature. The Journal of the Anthropological Institute of Great Britain and Ireland, 15:246–263, 1886. - 4. E.R. Dempster and I.M. Lerner. Heritability of threshold characters. Genetics, 35(2):212, 1950. - 5. D.S. Falconer. The inheritance of liability to certain diseases, estimated from the incidence among relatives. *Annals of Human Genetics*, 29(1):51–76, 1965. - 6. P.D. Sasieni. From genotypes to genes: doubling the sample size. *Biometrics*, 53(4):1253–1261, 1997. - 7. S.M. Berman. Limit theorems for the maximum term in stationary sequences. *The Annals of Mathematical Statistics*, 35(2):502–516, 1964. - 8. E.L. Ferguson and H.R. Horvitz. The multivulva phenotype of certain caenorhabditis elegans mutants results from defects in two functionally redundant pathways. *Genetics*, 123(1):109–121, 1989. - 9. W.G. Hill, M.E. Goddard, and P.M. Visscher. Data and theory point to mainly additive genetic variance for complex traits. *PLoS Genetics*, 4(2):e1000008, 2008. - 10. N.R. Wray and M.E. Goddard. Multi-locus models of genetic risk of disease. *Genome Medicine*, 2(2):1–13, 2010. - 11. A. Franke, D.P.B. McGovern, J.C. Barrett, K. Wang, G.L. Radford-Smith, T. Ahmad, C.W. Lees, T. Balschun, J. Lee, R. Roberts, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. *Nature Genetics*, 42(12):1118–1125, 2010. - 12. C.M. Lewis, S.C.L. Whitwell, A. Forbes, J. Sanderson, C.G. Mathew, and T.M. Marteau. Estimating risks of common complex diseases across genetic and environmental factors: the example of crohn disease. *Journal of Medical Genetics*, 44(11):689–694, 2007. - 13. M.D. Kappelman, S.L. Rifas-Shiman, K. Kleinman, D. Ollendorf, A. Bousvaros, R.J. Grand, and J.A. Finkelstein. The prevalence and geographic distribution of crohn's disease and ulcerative colitis in the united states. *Clinical Gastroenterology and Hepatology*, 5(12):1424–1429, 2007. - 14. J.F. Fielding. The relative risk of inflammatory bowel disease among parents and siblings of Crohn's disease patients. *Journal of clinical gastroenterology*, 8(6):655, 1986. - 15. M. McGue, I.I. Gottesman, and D.C. Rao. The transmission of schizophrenia under a multifactorial threshold model. *American Journal of Human Genetics*, 35(6):1161–1178, 1983. - 16. N. Risch. Linkage strategies for genetically complex traits. I. Multilocus models. *American Journal of Human Genetics*, 46(2):222–228, 1990. - 17. P. Lichtenstein, C. Bjrk, C.M. Hultman, E. Scolnick, P. Sklar, and P.F. Sullivan. Recurrence risks for schizophrenia in a swedish national cohort. *Psychological Medicine*, 36(10):1417–1426, 2006. - G. Galarneau, C.D. Palmer, V.G. Sankaran, S.H. Orkin, J.N. Hirschhorn, and G. Lettre. Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. *Nature Genetics*, 42(12):1049–1051, 2010. - E.K. Speliotes, C.J. Willer, S.I. Berndt, K.L. Monda, G. Thorleifsson, A.U. Jackson, H.L. Allen, C.M. Lindgren, J. Luan, R. Mgi, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 42(11):937–948, 2010. - 20. C.E. Elks, J.R.B. Perry, P. Sulem, D.I. Chasman, N. Franceschini, C. He, K.L. Lunetta, J.A. Visser, E.M. Byrne, D.L. Cousminer, et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. *Nature Genetics*, 42(12):1077–1085, 2010. - 21. D.M. Evans, C.C.A. Spencer, J.J. Pointon, Z. Su, D. Harvey, G. Kochan, U. Opperman, A. Dilthey, M. Pirinen, M.A. Stone, et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. *Nature Genetics*, 43(8):761–767, 2011. - A. Strange, F. Capon, C.C.A. Spencer, J. Knight, M.E. Weale, M.H. Allen, A. Barton, G. Band, C. Bellenguez, J.G.M. Bergboer, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. *Nature Genetics*, 42(11):985–990, 2010. - 23. J.C. Barrett, D. Clayton, P. Concannon, B. Akolkar, J.D. Cooper, H.A. Erlich, C. Julier, G. Morahan, J. Nerup, C. Nierras, et al. Genome-wide association study and meta-analysis finds over 40 loci affect risk of type 1 diabetes. *Nature Genetics*, 41(6):703-707, 2009. - 24. M.M. Carrasquillo, A.S. McCallion, E.G. Puffenberger, C.S. Kashuk, N. Nouri, and A. Chakravarti. Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in hirschsprung disease. *Nature Genetics*, 32(2):237–244, 2002. - 25. W.G. Cochran. Some methods for strengthening the common χ^2 tests. *Biometrics*, 10(4):417–451, 1954. - 26. P. Armitage. Tests for linear trends in proportions and frequencies. *Biometrics*, 11(3):375–386, 1955. - 27. D.G. Chapman and J.M. Nam. Asymptotic power of chi square tests for linear trends in proportions. *Biometrics*, 24(2):315–327, 1968. - 28. D. Gordon, S.J. Finch, M. Nothnagel, and J. Ott. Power and sample size calculations for case-control genetic association tests when errors are present: application to single nucleotide polymorphisms. *Human Heredity*, 54(1):22–33, 2002. - S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M.A.R. Ferreira, D. Bender, J. Maller, P. Sklar, P.I.W. de Bakker, M.J. Daly, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. *The American Journal of Human Genetics*, 81(3):559–575, 2007. - 30. S.R. Browning and B.L. Browning. High-resolution detection of identity by descent in unrelated individuals. *The American Journal of Human Genetics*, 86(4):526–539, 2010. - 31. J.E. Powell, P.M. Visscher, and M.E. Goddard. Reconciling the analysis of IBD and IBS in complex trait studies. *Nature Reviews Genetics*, 11(11):800–805, 2010. - 32. S.H. Lee, N.R. Wray, M.E. Goddard, and P.M. Visscher. Estimating missing heritability for disease from genome-wide association studies. *The American Journal of Human Genetics*, 88(3):294–305, 2011. - 33. H. Hunter-Zinck, S. Musharoff, J. Salit, K.A. Al-Ali, L. Chouchane, A. Gohar, R. Matthews, M.W. Butler, J. Fuller, N.R. Hackett, et al. Population genetic structure of the people of qatar. *The American Journal of Human Genetics*, 87(1):17–25, 2010. - 34. P.M. Visscher, S.E. Medland, MA Ferreira, K.I. Morley, G. Zhu, B.K. Cornes, G.W. Montgomery, and N.G. Martin. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. *PLoS Genetics*, 2(3):e41, 2006. # 13 Supplementary figures Figure 1: (a.) The distribution of the maximum of k standard Gaussian random variables, for different values of k. For k = 1 (black), the distribution is the standard Gaussian distribution. (b.) The (normalized)
distribution of quantitative traits under the Limiting Pathway model $LP(k, h_{pathway}^2, 0)$ for different values of k. These are the same distributions as in (a.), scaled to have mean zero and variance one. For $k \leq 10$, the deviations are small and would not be taken as meaningful evidence of non-linearity. Even for somewhat larger k, human geneticists would tend to ignore the deviations or apply a modest transformation. Figure 2: (a.) Phenotypic correlation of monozygotic twins (r_{MZ}) and dizygotic twins (r_{DZ}) for quantitative traits under the same LP models as in Fig. 1a (main text). The curves connect points with various values of k (1,2,3,4,5,6,7,10) with the tip of the arrow corresponding to k=10for particular values of $h_{pathway}^2$ (10, 30, 50, 70 and 90%, indicated by color of the curve). Red star indicates the example referred to in the text. Black points show the values of (r_{MZ}, r_{DZ}) for 86 actual quantitative traits reported by Hill et al.⁹ (Supp. Table 6). Under a purely additive model with no shared environment, the expectation is $r_{DZ} = r_{MZ}/2$. The values under the LP models, including as a special case the additive model (k=1), are largely similar to the values seen for the actual traits. (For raw data, see Supp. Table 7.) (b.) Relative risk to monozygotic twins (λ_{MZ}) and siblings (λ_s) for the same LP models as in Fig. 1b (main text). The curves connect points with various values of k (1, 2, 3, 4, 5, 6, 7, 10 with the tip of the arrow corresponding to k = 10) for particular values of $h_{pathway}^2$ (10, 30, 50, 70 and 90%, indicated by color of the curve) and prevalence (solid 0.1%, dotted 1%, dashed 10%). Red star indicates the example referred to in the text. Black points show the values of (λ_{MZ}, λ_s) for 15 actual diseases, reported by Wray et al.¹⁰ (Supp. Table 2). The values of $(\lambda_{MZ}, \lambda_s)$ observed under the LP models show largely similar relationships to those observed for the actual traits. (Interestingly, the median value of λ_s observed for real diseases is $\sim 11\%$ smaller than the value expected under a strictly additive model, although the variance is large $\sim 32.3\%$.) Inset shows a zoomed-in view for $\lambda_{MZ} < 5$. (For raw data, see Supp. Table 2.) Figure 3: (a.) Deviation between the values of r_{DZ} observed under the Limiting Pathway model, and the values expected under the (incorrect) assumption that the trait follows an A_{Δ} model, for various parameters. The curves connect points with various values of k (1, 2, 3, 4, 5, 6, 7, 10, with the tip of the arrow corresponding to k = 10) for particular values of $h_{pathway}^2$ (10, 30, 50, 70 and 90%, indicated by color of the curve) and c_R (0% filled circles and arrows, 50% open boxes and arrows). Red star indicates the example referred to in the main text. The deviations are largely similar to the values seen for actual traits. (b.) The apparent heritability h_{pop}^2 (y-axis) plotted against the heritability h_{all}^2 (x-axis), under the same Limiting Pathway models as in (a). For k=1, the points lie on the diagonal dashed black line $h_{all}^2 = h_{pop}^2$, indicating that the phantom heritability is zero. As k increases, the true heritability h_{all}^2 drops rapidly, but the top-down estimate h_{pop}^2 either decreases at a slower rate (for $c_R = 0\%$), or even increases ($c_R = 50\%$). In both cases the gap between the two quantities increases, resulting in an increase in phantom heritability. Figure 4: (a.) Deviation between the value of λ_s observed under the Limiting Pathway model and the value expected under the (incorrect) assumption that the trait follows an A_{Δ} model, for various parameters. The curves connect points with various values of k (1, 2, 3, 4, 5, 6, 7, 10 with the tip of the arrow corresponding to k = 10) for particular values of $h_{pathway}^2$ (10, 30, 50, 70 and 90%, indicated by color of the curve) and prevalence (solid 0.1%, dotted 1%, dashed 10%). We assume no shared environmental variance ($c_R = 0$). Red star indicates the example referred to in the main text. The deviations are largely similar to the values seen for actual traits, except for traits where the observed λ_s is much bigger than the expected λ_s . (b.) The apparent heritability h_{pop}^2 (y-axis) plotted against the true heritability h_{all}^2 (x-axis) under the same Limiting Pathway models as in (a). For k=1, the points lie on the diagonal dashed black line $h_{all}^2 = h_{pop}^2$, indicating that the phantom heritability is zero. As k increases, the true heritability h_{all}^2 drops rapidly, but the top-down estimate either decreases at a slower rate or even increases, depending on $h_{pathway}^2$ and μ . The gap between the two quantities increases, resulting in an increase in phantom heritability. Figure 5: (a.) Relative risk to monozygotic twins (λ_{MZ}) and siblings (λ_s) for disease traits under the Limiting Pathway model $LP_{\Delta}(k,h_{pathway}^2,c_R,\mu)$ for various parameters. The curves connect points with various values of k (1,2,3,4,5,6,7,10) with the tip of the arrow corresponding to k=10) for particular values of $h_{pathway}^2$ (10, 30, 50, 70 and 90%, indicated by color of the curve), prevalence (solid 0.1%, dotted 1%, dashed 10%), and shared environment (0% filled circles and arrows, 50% open boxes and arrows). Red star indicates the example referred to in the main text. Black points show the values of $(\lambda_{MZ}, \lambda_s)$ for 15 actual diseases, reported by Wray et al. Supp. Fig. 2b includes only the case of no shared environment $(c_R = 0)$. The inclusion of shared environment further increases λ_s relative to λ_{MZ} (and to the expected λ_s) and provides a better fit for some of the observed epidemiological parameters. (b.) Phantom heritability $\pi_{phantom}$ (y-axis) plotted against the monozygotic twin relative risk λ_{MZ} (x-axis) under the same Limiting Pathway models as in (a). The phantom heritability increases with k. Shared environment increases the monozygotic risk λ_{MZ} substantially, and also slightly increases the phantom heritability. Figure 6: (a.) Heritability for the generalized LP model $\Psi = \log[\sum_i e^{\alpha \Psi^{(i)}}]$ for different values of α . Shown are the top-down heritability h_{pop}^2 (blue), bottom-up heritability h_{all}^2 (red), and the resulting phantom heritability $\pi_{phantom}$ (green) for α in the range [0,10], for a model with k=3 pathways and $h_{pathway}^2 = 80\%$ heritability in each pathway. For each value of α , the heritabilities were computed by simulating 10^6 families and computing the familial correlation (for h_{pop}^2) and the correlation between genotypes and phenotypes (for h_{all}^2). For $\alpha \to 0$ the model is additive, with $h_{all}^2 = h_{pop}^2 = 80\%$ and $\pi_{phantom} = 0\%$. As α increases, the model becomes more and more non-linear and the phantom heritability increases. At $\alpha = 10$, the model is already very close to the LP model $LP(k=3, h_{pathway}^2 = 80\%)$ (denoted in stars). Figure 7: (a.) Curves show log of relative risk (λ_R) for schizophrenia to relatives of an affected individual, as a function of twice the kinship coefficient (κ_R) (for MZ twins, DZ twins, grand-children and cousins). Blue stars show data from Risch et al. Red curve shows the fit to an additive A_{Δ} model. Green curve shows the fit to the LP(2) model. Both models provide similar fit to the empirical data. (b.) Curves are as in (a), except that the y-axis is correlation (r_R) among family members, as a function of twice the kinship coefficient (for MZ twins, DZ twins, grand-children and cousins). To obtain the data, the relative risk (λ_R) was transformed to correlation the liability scale (r_R), by fitting a A_{Δ} model with prevalence $\mu = 0.85\%$ (see Supp. Table 5). Under the additive model, the correlations are proportional to the kinship - that is fall on a straight line (shown in red). The deviations from the red line for both the empirical data and the LP(2) model are small. While both the additive and non-additive models fit the data, the phantom heritability according the additive model is 0% and under the $LP_{\Delta}(2)$ model is large (46%). Figure 8: Curves show sample size required to detect individual loci (solid curves), pairwise interactions between two loci (dotted curves) and meta-interactions (dashed curves), at indicated power levels (10% (blue), 50% (green) and 90% (red)) for a disease with prevalence corresponding to the model LP_{Δ} ($k=3,h_{pathway}^2=50\%,c_R,\mu=0.01\%$). For the calculations here, each locus g_i is assumed to have minor allele frequency $f_i = 0.2$. For detecting individual loci, the x-axis refers to the fraction ϕ_i of the apparent heritability that a geneticist would attribute to a locus given the effect size η_i observed in a GWAS and the (incorrect) assumption that the trait follows an A_{Δ} model. (Specifically, the variance attributed to the locus is $h_i^2 = \beta_i^2 f_i(1-f_i)$, and the fraction of the apparent heritability explained is $\phi_i = h_i^2/h_{pop}^2$). For detecting pairwise interactions, the x-axis refers to the fraction ϕ_i of the apparent heritability that would be attributed to each of the two loci being tested for interaction. For detecting meta-interactions between pathways, the x-axis refers to the fraction h_i^2 of the apparent heritability that would be attributed to a set of loci in each of two pathways (See Section 7 for a description of power calculations). Red star indicates the example referred to in the text. Compared to the sample size required to detect the individual loci, the sample size
required to detect the pairwise interactions among the loci is roughly 8-fold larger. This is due to both the greater statistical power obtained by combining the signal from multiple loci, as well as to the lower burden of multiple hypothesis testing. **Figure 9:** The graph shows the different variance components for a two-locus model from Hill et al.⁹ The model specifies the value of a quantitative trait as a function of genotype according to the following table (for some constant c > 0): The variance components for this model are plotted as a function of the allele frequencies, where we assume both variants have the same minor allele frequency, Pr(a) = Pr(b) = p. The curves show the total genetic variance V_G (red), the fraction of additive variance V_A/V_G (green) and the fraction of interaction variance V_{AA}/V_G (blue). As the allele frequency p approaches zero, the fraction of interaction variance, V_{AA}/V_G , approaches zero, but the total genetic variance V_G also approaches zero and the trait becomes a rare trait. Figure 10: The graph shows the relation between the response to selection, $\frac{\Delta\mu}{\Delta s}$, and the apparent heritability $h_{pop}^2(PO)$. We studied the $P^* = LP(4,50\%,50\%)$ model, for which the true narrow sense heritability is $h_{all}^2 = 25.4\%$ and the population estimate $h_{pop}^2(PO) = 70.8\%$. For 50,000 simulated trios we plotted the mid-parent phenotype (x-axis) vs. offspring phenotype (y-axis). Blue points represent unselected trios. Red points represent selected trios. Parents were required to have phenotype ≥ 1 to reproduce (dashed vertical black line denotes mid-parent value = 1). Not all points with mid-parent value ≥ 1 are selected (red), since selection requires both parent's phenotype to exceed the threshold (not merely their average). The magenta curve shows, for each value of the mid-parent phenotype (x-axis), the mean value of the offspring phenotype (y-axis). The mean value of the offspring phenotype is roughly linearly proportional to the mid-parent phenotype, as can be seen by comparing it to the linear regression line over all points (dashed red). The black star denotes the average mid-parent phenotype in the selected parents (Δs) vs. the expected offspring phenotype for these parents $(\Delta \mu)$. It is obtained by averaging over all values of parent phenotypes above the threshold 1. Since the black star lies roughly on the line connecting mid-parent phenotype and expected offspring phenotype, the value $\frac{\Delta s}{\Delta u}$ (the response to selection) is roughly equal to the slope of this line $(h_{pop}^2(PO))$. Both values exceed h_{all}^2 , as can be seen by plotting the line $y = h_{all}^2 x$ (shown in dashed green), which has a lower slope. Figure 11: The graph shows how the average phenotypic deviation in a set of selected parents (x-axis) corresponds to the average phenotypic deviation in the resulting offspring. We studied the LP(4,50%,50%) model, for which the true narrow sense heritability is $h_{all}^2 = 25.4\%$ and the apparent heritability based on parent-offspring calculation $h_{pop}^2(PO) = 70.8\%$. Selection was performed by taking the parents to be individuals with phenotype $Z > \tau$, for a given threshold τ , and then simulating 50,000 parent-offspring trios. For various thresholds τ , we calculated: the value of Δs , the average value of $\Delta \mu$ across the offspring and the average ratio $\frac{\Delta \mu}{\Delta s}$ (by regressing $\Delta \mu$ on Δs .) We repeated the simulation 100 times, to find average regression coefficient as an estimator for heritability. The mean slope of the regression line is ~ 0.071 , which is very close to $h_{pop}^2(PO)$. Thus, the breeder's equation $\frac{\Delta \mu}{\Delta s} = h_{pop}^2(PO)$ still holds to a good approximation, even though the trait is highly non-additive. # 14 Supplementary tables **Table 6:** The table shows reported values of r_{MZ} and r_{DZ} for different traits. Under an additive model with no shared environment we expect $r_{MZ} - 2r_{DZ} = 0$. While observed values of $r_{MZ} - 2r_{DZ}$ have a median around zero, they display wide deviations. | Trait | $r_{MZ}(\%)$ | $r_{DZ}(\%)$ | $r_{MZ} - 2r_{DZ}(\%)$ | |---------------------------------------|--------------|--------------|------------------------| | Age at first reproduction | 39 | 28 | -17 | | Age at menarche | 51 | 17 | 17 | | Age at menopause | 52 | 29 | -6 | | Airway histamine responsivness | 63 | 32 | -1 | | Alanine aminotransferase | 49 | 19 | 10 | | Alcohol consumption | 68 | 34 | 1 | | Alcohol dependence | 61 | 34 | -6 | | ApoE | 61 | 28 | 5 | | Aspartate aminotransferase | 32 | 16 | 0 | | Birth weight | 75 | 74 | -73 | | Blood: CD4/CD8 ratio | 85 | 50 | -15 | | Blood: Lymphocytes | 72 | 42 | -12 | | Blood: Mean corpuscular volume | 97 | 47 | 3 | | Blood: Platelets | 82 | 46 | -11 | | Blood: White blood cells | 71 | 42 | -14 | | BMI, age 20-29 | 70 | 26 | 18 | | BMI, age 30-39 | 73 | 39 | -4 | | Cannabis dependence | 64 | 44 | -25 | | Carabelli trait in teeth (right side) | 89 | 41 | 6 | | Chronic pelvic pain | 43 | 11 | 21 | | Cloninger: Harm avoidance | 44 | 11 | 21 | | Cloninger: Novelty seeking | 41 | 11 | 18 | | Cloninger: Persistence | 35 | 11 | 13 | | Cloninger: Reward dependence | 38 | 8 | 22 | | Coffee consumption | 52 | 20 | 12 | | DSVIV Major depressive disorder | 31 | 12 | 6 | | Depth of sleep | 33 | 1 | 31 | | Diastolic blood pressure | 53 | 33 | -13 | | Disordered eating in women (Wave 2) | 29 | 10 | 9 | | Endometriosis | 46 | 28 | -10 | | Eosinophils | 59 | 17 | 25 | | Exercise participation | 46 | 21 | 5 | | Fainting because of blood | 43 | 30 | -16 | | Fainting non-blood | 46 | 54 | -63 | | Fatigue | 43 | 16 | 11 | | Fear of blood | 71 | 20 | 31 | | Female orgasm | 31 | 16 | -1 | | Finger ridge count | 95 | 40 | 15 | | Fitness | 42 | 19 | 4 | | Forced expiratory volume | 90 | 64 | -38 | | Haemoglobin age 12 | 84 | 54 | -24 | | Hay fever | 61 | 25 | 10 | | Height (clinically measured) | 92 | 42 | 7 | | IQ | 84 | 47 | -10 | | Immunoglobulin E | 67 | 18 | 31 | **Table 6:** Epidemiological parameters for a list of quantitative traits. (Source: Hill et al.⁹) (cont.) | Trait | $r_{MZ}(\%)$ | $r_{DZ}(\%)$ | $r_{MZ} - 2r_{DZ}(\%)$ | |--------------------------------------|--------------|--------------|------------------------| | Incisor dimension: Lower-right-2 | 84 | 42 | 0 | | Incisor dimension: Upper-left-1 | 88 | 43 | 2 | | Individual Alpha frequency (EEG) | 86 | 35 | 16 | | Inspection Time | 41 | 19 | 3 | | Insulin concentration | 32 | 20 | -8 | | Liability to appendectomy | 48 | 35 | -23 | | Liability to asthma | 64 | 23 | 18 | | Liability to tonsillectomy: Cohort 1 | 86 | 58 | -29 | | Male baldness | 81 | 39 | 3 | | Melanocytic naevi size (area) | 65 | 39 | -12 | | Mouth ulcers | 57 | 29 | -1 | | Neuroticism | 37 | 17 | 3 | | Neuroticism | 40 | 14 | 12 | | Nevus (mole) count | 94 | 63 | -32 | | Osteoarthritis in women | 41 | 22 | -3 | | Parietal P300 latency | 47 | 22 | 3 | | Parietal slow wave amplitude | 46 | 33 | -20 | | Performance IQ | 72 | 34 | 5 | | Prefrontal P300 latency | 46 | 19 | 8 | | Prefrontal slow wave amplitude | 40 | 15 | 10 | | Premature parturition for any birth | 30 | 3 | 24 | | Prementrual Symptoms (factor score) | 45 | 16 | 13 | | Psychosis proneness Scale 1 | 34 | 14 | 6 | | Psychosis proneness Scale 2 | 28 | 15 | -2 | | Psychosis proneness Scale 3 | 51 | 9 | 33 | | Psychosis proneness Scale 4 | 39 | 10 | 19 | | Quality of sleep | 31 | 18 | -4 | | Red blood cell folate | 46 | 20 | 6 | | Red cell count age 12 | 88 | 57 | -25 | | Serum dehydroepiandrosterone sulfate | 59 | 30 | 0 | | Serum gamma-glutamyltransferase | 52 | 22 | 9 | | Smoking initiation (younger cohort) | 84 | 48 | -13 | | Stuttering | 43 | 12 | 19 | | Susceptibility to Migraine | 35 | 15 | 5 | | Systolic blood pressure | 57 | 23 | 11 | | Tea consumption | 50 | 29 | -9 | | Teenage acne severity, age 14 | 80 | 26 | 28 | | Total cholesterol | 61 | 34 | -7 | | Triglycerides | 54 | 34 | -14 | | Verbal IQ | 81 | 49 | -18 | | Voting behavior | 81 | 69 | -57 | #### Table 7: For each choice of the model parameters $(k, h_{pathway}^2)$ and c_R we calculated relevant genetic and population parameters. - V_c is the fraction of total *phenotypic* variance for the trait attributable to shared environment. (Recall that c_R is the fraction of the *environmental* variance for each pathway attributable to shared environment.) - \bullet r_{MZ} and r_{DZ} are the monozygotic and dizygotic twin correlations in phenotype, respectively. - h_{all}^2 is the true narrow sense heritability (fraction of phenotypic variance explained by an additive model including all genetic variants). - $h_{pop}^2(ACE), h_{pop}^2(ADE)$ and $h_{pop}^2(PO)$ are the apparent heritabilities calculated using the three population estimators (See Section 1). - $\pi_{phan}(ACE)$, $\pi_{phan}(ADE)$ and $\pi_{phan}(PO)$ are the missing heritabilities associated with each of the apparent heritabilities. (See Section 1). **Table 7:** Model parameters for the LP model $LP\left(k,h_{pathway}^{2},c_{R}\right)$ for quantitative traits. | k | $h_{path}^2(\%)$ | $c_R(\%)$ | $r_{MZ}(\%)$ | $r_{DZ}(\%)$ | $h_{all}^2(\%)$ | $V_c(\%)$ | $h_{pop}^{2(ACE)}(\%)$ | $\pi_{phan}^{(ACE)}(\%)$ | $h_{pop}^{2(ADE)}(\%)$ | $\pi_{phan}^{(ADE)}(\%)$ | $h_{pop}^{2(PO)}(\%)$ | $\pi^{(PO)}_{phan}(\%)$ | |-----|------------------|-----------|--------------|--------------|-----------------|--------------|------------------------|--------------------------|------------------------|--------------------------|-----------------------|-------------------------| | 1 | 10 | 0 | 10.0 | 5.0 | 10.0 | 0.0 | 10.0 | 0.0 | 10.0 | 0.0 | 10.0 | 0.0 | | 1 | 30 | 0 | 30.0 | 15.0 | 30.0 | 0.0 | 30.0 | 0.0 | 30.0 | 0.0 | 30.0 | 0.0 | | 1 | 50 | 0 | 50.0 | 25.0 | 50.0 | 0.0 | 50.0 | 0.0 | 50.0 | 0.0
 50.0 | 0.0 | | 1 | 70 | 0 | 70.0 | 35.0 | 70.0 | 0.0 | 70.0 | 0.0 | 70.0 | 0.0 | 70.0 | 0.0 | | 1 | 90 | 0 | 90.0 | 45.0 | 90.0 | 0.0 | 90.0 | 0.0 | 90.0 | 0.0 | 90.0 | 0.0 | | 1 | 10 | 25 | 32.5 | 27.5 | 10.0 | 22.5 | 10.0 | 0.0 | 77.5 | 87.1 | 55.0 | 81.8 | | 1 | 30 | 25 | 47.5 | 32.5 | 30.0 | 17.5 | 30.0 | 0.0 | 82.5 | 63.6 | 65.0 | 53.8 | | 1 | 50 | 25 | 62.5 | 37.5 | 50.0 | 12.5 | 50.0 | 0.0 | 87.5 | 42.9 | 75.0 | 33.3 | | 1 | 70 | 25 | 77.5 | 42.5 | 70.0 | 7.5 | 70.0 | 0.0 | 92.5 | 24.3 | 85.0 | 17.6 | | 1 | 90 | 25 | 92.5 | 47.5 | 90.0 | 2.5 | 90.0 | 0.0 | 97.5 | 7.7 | 95.0 | 5.3 | | 1 | 10 | 50 | 55.0 | 50.0 | 10.0 | 45.0 | 10.0 | 0.0 | 100.0 | 93.1 | 100.0 | 90.0 | | 1 | 30 | 50 | 65.0 | 50.0 | 30.0 | 35.0 | 30.0 | 0.0 | 100.0 | 77.8 | 100.0 | 70.0 | | 1 | 50 | 50 | 75.0 | 50.0 | 50.0 | 25.0 | 50.0 | 0.0 | 100.0 | 60.0 | 100.0 | 50.0 | | 1 1 | 70
90 | 50 | 85.0 | 50.0 | 70.0
90.0 | 15.0 | 70.0
90.0 | 0.0 | 100.0 | 39.1 | 100.0 | 30.0
10.0 | | 1 | 10 | 50
75 | 95.0
77.5 | 50.0
72.5 | 10.0 | 5.0
67.5 | 10.0 | 0.0 | 100.0
100.0 | 14.3
95.3 | 100.0
100.0 | 93.1 | | 1 | 30 | 75 | 82.5 | 67.5 | 30.0 | 52.5 | 30.0 | 0.0 | 100.0 | 84.0 | 100.0 | 77.8 | | 1 | 50 | 75 | 87.5 | 62.5 | 50.0 | 37.5 | 50.0 | 0.0 | 100.0 | 69.2 | 100.0 | 60.0 | | 1 | 70 | 75 | 92.5 | 57.5 | 70.0 | 22.5 | 70.0 | 0.0 | 100.0 | 49.1 | 100.0 | 39.1 | | 1 | 90 | 75 | 97.5 | 52.5 | 90.0 | 7.5 | 90.0 | 0.0 | 100.0 | 20.0 | 100.0 | 14.3 | | 2 | $ \frac{33}{10}$ | 0 | 7.6 | 3.7 | 7.3 | 0.0 | | 4.5 | 7.3 | | 7.4 | 1.5 | | 2 | 30 | 0 | 24.1 | 11.5 | 22.0 | 0.0 | 25.2 | 12.6 | 22.0 | 0.0 | 23.0 | 4.5 | | 2 | 50 | 0 | 42.6 | 19.8 | 36.7 | 0.0 | 45.7 | 19.7 | 36.6 | 0.0 | 39.6 | 7.4 | | 2 | 70 | 0 | 63.3 | 28.6 | 51.3 | 0.0 | 69.5 | 26.2 | 50.9 | 0.0 | 57.1 | 10.1 | | 2 | 90 | 0 | 86.7 | 37.8 | 66.0 | 0.0 | 97.8 | 32.5 | 64.5 | 0.0 | 75.6 | 12.7 | | 2 | 10 | 25 | 26.3 | 21.9 | 7.3 | 18.8 | 8.8 | 16.2 | 61.4 | 88.1 | 43.9 | 83.3 | | 2 | 30 | 25 | 40.2 | 26.3 | 22.0 | 16.1 | 27.8 | 20.8 | 65.1 | 66.2 | 52.6 | 58.2 | | 2 | 50 | 25 | 55.3 | 30.8 | 36.7 | 12.7 | 48.9 | 25.1 | 68.0 | 46.1 | 61.6 | 40.5 | | 2 | 70 | 25 | 71.7 | 35.4 | 51.3 | 8.4 | 72.6 | 29.2 | 70.1 | 26.7 | 70.9 | 27.6 | | 2 | 90 | 25 | 89.9 | 40.2 | 66.0 | 3.2 | 99.4 | 33.6 | 70.9 | 6.9 | 80.4 | 17.9 | | 2 | 10 | 50 | 47.6 | 42.6 | 7.3 | 40.0 | 9.9 | 26.0 | 100.0 | 94.0 | 85.3 | 91.4 | | 2 | 30 | 50 | 57.9 | 42.6 | 22.0 | 33.8 | 30.6 | 28.1 | 100.0 | 80.5 | 85.3 | 74.2 | | 2 2 | 50 | 50 | 68.9 | 42.6 | 36.7 | 26.3 | 52.5 | 30.2
32.3 | 100.0
90.0 | 63.9 | 85.3 | 57.0
39.8 | | 2 | 70
90 | 50
50 | 80.6
93.1 | 42.6
42.6 | 51.3
66.0 | 17.2
6.4 | 75.9
100.0 | 34.7 | 77.4 | 42.9
14.7 | 85.3
85.3 | 22.6 | | 2 | 10 | 75 | 71.7 | 66.1 | 7.3 | 64.2 | 11.3 | 35.1 | 100.0 | 96.2 | 100.0 | 94.5 | | 2 | 30 | 75 | 77.6 | 60.6 | 22.0 | 53.5 | 33.9 | 35.1 | 100.0 | 86.7 | 100.0 | 81.8 | | 2 | 50 | 75 | 83.6 | 55.3 | 36.7 | 41.0 | 56.6 | 35.2 | 100.0 | 73.3 | 100.0 | 66.8 | | 2 | 70 | 75 | 89.9 | 50.1 | 51.3 | 26.6 | 79.5 | 35.5 | 100.0 | 53.6 | 100.0 | 48.8 | | 2 | 90 | 75 | 96.5 | 45.1 | 66.0 | 9.8 | 100.0 | 35.8 | 83.9 | 21.3 | 90.2 | 26.8 | | 3 | 10 | 0 | 6.3 | 3.0 | 6.0 | 0.0 | 6.4 | 7.5 | 5.9 | 0.0 | 6.1 | 2.3 | | 3 | 30 | 0 | 20.8 | 9.7 | 17.9 | 0.0 | 22.4 | 20.1 | 17.8 | 0.0 | 19.3 | 7.4 | | 3 | 50 | 0 | 38.4 | 16.9 | 29.8 | 0.0 | 42.8 | 30.4 | 29.4 | 0.0 | 33.9 | 12.1 | | 3 | 70 | 0 | 59.3 | 24.9 | 41.7 | 0.0 | 68.7 | 39.2 | 40.5 | 0.0 | 49.9 | 16.4 | | 3 | 90 | 0 | 84.6 | 33.7 | 53.6 | 0.0 | 100.0 | 47.3 | 50.1 | 0.0 | 67.4 | 20.4 | | 3 | 10 | 25 | 22.9 | 18.9 | 6.0 | 16.6 | 8.0 | 25.5 | 52.6 | 88.7 | 37.7 | 84.2 | | 3 | 30 | 25 | 36.0 | 22.9 | 17.9 | 15.1 | 26.2 | 31.9 | 55.5 | 67.8 | 45.7 | 60.9 | | 3 | 50 | 25 | 51.0 | 27.0 | 29.8 | 12.6 | 47.9 | 37.8 | 57.2 | 47.9 | 54.1 | 44.9 | | 3 | 70 | 25 | 68.1 | 31.4 | 41.7 | 8.9 | 73.5 | 43.2 | 57.5 | 27.5 | 62.8 | 33.6 | | 3 | 90 | 25
50 | 88.2 | 36.0 | 53.6 | 3.6 | 100.0 | 48.6 | 55.8 | 3.9 | 72.0 | 25.5 | | 3 | 10
30 | 50
50 | 43.2
53.7 | 38.4
38.4 | 6.0
17.9 | 37.0
32.8 | 9.8
30.6 | 39.0
41.7 | 100.0
99.7 | 94.6
82.1 | 76.7
76.7 | 92.2
76.7 | | 3 | 50 | 50
50 | 65.1 | 38.4 | 29.8 | 26.8 | 53.5 | 41.7 | 99.7
88.3 | 66.3 | 76.7 | 61.2 | | 3 | 70 | 50
50 | 77.7 | 38.4 | 29.8
41.7 | 26.8
18.5 | 78.8 | 44.3
47.0 | 88.3
75.7 | 44.9 | 76.7 | 45.6 | | 3 | 90 | 50 | 91.9 | 38.4 | 53.6 | 7.3 | 100.0 | 49.9 | 61.5 | 12.8 | 76.7 | 30.1 | | 3 | 10 | 75 | 68.1 | 62.2 | 6.0 | 61.9 | 12.0 | 50.3 | 100.0 | 96.7 | 100.0 | 95.2 | | 3 | 30 | 75 | 74.5 | 56.4 | 17.9 | 53.6 | 36.0 | 50.4 | 100.0 | 88.2 | 100.0 | 84.2 | | 3 | 50 | 75 | 81.1 | 51.0 | 29.8 | 42.8 | 60.3 | 50.6 | 100.0 | 75.7 | 100.0 | 70.8 | | 3 | 70 | 75 | 88.2 | 45.8 | 41.7 | 28.9 | 84.8 | 50.8 | 94.8 | 56.0 | 91.5 | 54.4 | | 3 | 90 | 75 | 95.8 | 40.8 | 53.6 | 11.2 | 100.0 | 51.3 | 67.3 | 20.3 | 81.5 | 34.2 | | L | | | | | | . – – – | <u>-</u> | | · | | | | **Table 7:** Model parameters for the LP model $LP\left(k,h_{pathway}^{2},c_{R}\right)$ for quantitative traits. (cont.) | 4 10 0 5.4 2.6 5.1 0.0 5.6 9.7 5.0 0.0 5.2 4 50 0 35.4 15.3 22.4 0.0 40.7 37.5 22.8 0.0 30.1 4 70 0 35.4 22.5 35.6 0.0 67.7 47.5 33.6 0.0 36.0 4 90 25.8 30.8 45.5 0.0 0.0 67.7 47.5 33.6 0.0 61.0 4 30 25 43.3 30.8 45.5 0.0 10.0 56.7 46.1 69.9 41.1 4 70 25 65.5 28.7 31.4 42.5 49.9 45.8 50.0 42.2 49.0 45.8 4 90 25 86.9 33.1 45.8 3.9 100.0 57.5 45.4 0.0 66.2 4 90 50 50.7 35.4 <th> k</th> <th>$h_{path}^2(\%)$</th> <th>$c_R(\%)$</th> <th>$r_{MZ}(\%)$</th> <th>$r_{DZ}(\%)$</th> <th>$h_{all}^2(\%)$</th> <th>$V_c(\%)$</th> <th>$h_{pop}^{2(ACE)}(\%)$</th> <th>$\pi_{phan}^{(ACE)}(\%)$</th> <th>$h_{pop}^{2(ADE)}(\%)$</th> <th>$\pi_{phan}^{(ADE)}(\%)$</th> <th>$h_{pop}^{2(PO)}(\%)$</th> <th>$\pi_{phan}^{(PO)}(\%)$</th> | k | $h_{path}^2(\%)$ | $c_R(\%)$ | $r_{MZ}(\%)$ | $r_{DZ}(\%)$ | $h_{all}^2(\%)$ | $V_c(\%)$ | $h_{pop}^{2(ACE)}(\%)$ | $\pi_{phan}^{(ACE)}(\%)$ | $h_{pop}^{2(ADE)}(\%)$ | $\pi_{phan}^{(ADE)}(\%)$ | $h_{pop}^{2(PO)}(\%)$ | $\pi_{phan}^{(PO)}(\%)$ | |---|-----|------------------|-----------|--------------|--------------|-----------------|-----------|------------------------|--------------------------|------------------------|--------------------------|-----------------------|-------------------------| | 4 30 0 18.7 8.4 15.3 0.0 29.4 29.4 15.1 0.0 16.9 4 70 0 56.4 22.5 35.6 0.0 40.7 37.5 22.8 0.0 40.0 4 70 0 0 58.8 30.8 45.8 0.0 100.1 40.1 40.2 33.7 4 10 2 20.3 11.0 10.5 31.3 13.1 40.1 40.2 40.1 80.2 33.7 4 70 25 65.5 28.7 35.6 9.2 73.8 51.8 49.1 27.5 57.3 4 70 25 65.5 28.7 35.6 9.2 73.8 51.8 49.1 27.5 57.3 4 10 50 40.7 35.4 45.8 39.3 100.0 50.9 70.8 4 10 50 75.7 35.4 15.3 3 | 4 | | | | | | | | 9.7 | | priari | | 2.5 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4 | 30 | 0 | 18.7 | | 15.3 | 0.0 | 20.4 | 25.4 | 15.1 | 0.0 | 16.9 | 9.5 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 0 | | | | | | | | | | 15.5 | | 4 | 4 | 70 | 0 | 56.4 | 22.5 | 35.6 | 0.0 | 67.7 | 47.5 | 33.6 | 0.0 | 45.0 | 20.9 | | 4 30 25 33.1 20.5 15.3 14.4 25.1 39.2 40.1 68.9 41.1 4 70 25 65.5 22.7 35.6 9.2 73.8 51.8 49.1 27.5 57.3 4 10 50 40.2 35.4 5.1 34.8 9.6 47.1 100.0 95.0 70.8 4 30 50 50.7 35.4 5.1 34.8 9.6 47.1 100.0 95.0 70.8 4 50 50 62.7 35.4 35.4 35.4 36.6 9.0 70.9 83.2 70.8 4 50 50 62.7 35.4 48.8 30 100.5 58.8 50.6 67.0 70.8 4 70 75 66.5 50.3 5.1 60.1 12.4 59.1 100.0 97.8 100.0 4 70 75 66.5 50.3 | 4 | 90 | 0 | 83.0 | 30.8 | 45.8 | 0.0 | 100.0 | 56.1 | 40.4 | 0.0 | 61.7 | 25.8 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4 | 10 | 25 | 20.5 | 16.8 | 5.1 | 15.1 | 7.4
| 31.7 | 46.7 | 89.1 | 33.6 | 84.9 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4 | 30 | 25 | 33.1 | 20.5 | 15.3 | 14.4 | 25.1 | 39.2 | 49.1 | 68.9 | 41.1 | 62.9 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4 | 50 | 25 | 47.9 | 24.5 | 25.4 | 12.5 | 46.9 | 45.8 | 50.0 | 49.2 | 49.0 | 48.1 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4 | 70 | 25 | 65.5 | 28.7 | 35.6 | 9.2 | 73.8 | 51.8 | 49.1 | 27.5 | 57.3 | 37.9 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - 1 | | | | | | | | | | | | 30.8 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4 | 10 | 50 | 40.2 | 35.4 | 5.1 | 34.8 | 9.6 | 47.1 | 100.0 | 95.0 | 70.8 | 92.8 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - 1 | | | | | | | | | | | | 78.5 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | 64.1 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | 49.7 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | 35.4 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - 1 | | | | | | | | | | | | 95.7 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - 1 | | | | | | | | | | | | 85.7 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | 73.5 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - 1 | | | | | | | | | | | | 58.3
39.4 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | + | | | | | | | | . – – – – – - | | | $ \frac{39.4}{2.3}$ | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - 1 | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - 1 | | | | | | | | | | | | 11.1
18.1 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | 24.3 | | 5 10 25 18.8 15.3 4.5 14.0 7.0 36.4 42.4 89.5 30.6 5 30 25 30.9 18.8 13.4 13.9 24.2 24.5 44.5 44.4 69.8 37.6 5 70 25 63.5 22.6 22.3 12.4 46.0 51.5 44.7 50.1 45.2 5 70 25 68.5 26.6 31.3 9.4 73.8 57.6 42.9 27.1 53.2 5 10 50 37.9 33.2 4.5 33.1 9.5 52.8 94.7 95.3 66.3 5 30 50 60.3 33.2 13.4 31.3 19.9 81.7 61.7 58.6 46.6 66.3 5 70 50 74.0 33.2 41.2 58.8 72.4 69.1 66.3 5 70 50 90.2 33.2 | - 1 | | | | | | | | | | | | 30.0 | | 5 30 25 43.6 22.6 22.3 12.4 46.0 51.5 44.7 50.1 45.2 5 70 25 63.5 26.6 31.3 9.4 73.8 57.6 42.9 27.1 53.2 5 90 25 85.9 30.9 40.2 4.1 100.0 63.4 37.7 0.0 61.8 5 10 50 37.9 33.2 4.5 33.1 9.5 52.8 94.7 95.3 66.3 5 30 50 48.3 33.2 13.4 31.3 30.4 55.9 84.3 84.1 66.3 5 50 50 60.3 33.2 22.3 27.1 55.8 79.9 84.3 84.1 66.3 5 70 50 70.0 33.2 40.2 8.5 100.0 64.8 42.4 5.2 66.3 5 90 50 90.2 33.2 | - 1 | | | | | | | | | | | | 85.4 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - 1 | | | | | | | | | | | | 64.4 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - 1 | | | | | | | | | | | | 50.5 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - 1 | | | | | | | | | | | | 41.2 | | 5 30 50 48.3 33.2 13.4 31.3 30.4 55.9 84.3 84.1 66.3 5 50 50 60.3 33.2 22.3 27.1 54.2 58.8 72.4 69.1 66.3 5 90 50 90.2 33.2 40.2 8.5 100.0 64.8 42.4 5.2 66.3 5 10 75 63.5 57.1 4.5 58.7 12.8 65.0 100.0 99.0 100.0 5 30 75 70.4 51.2 13.4 53.3 38.4 65.1 100.0 99.0 100.0 5 50 75 77.8 45.6 22.3 44.6 64.4 65.3 100.0 78.6 91.2 5 70 75 94.8 35.5 40.2 13.1 100.0 66.1 47.1 14.6 71.0 6 30 0 15.8 6.9 <td>- 1</td> <td>90</td> <td></td> <td></td> <td></td> <td></td> <td>4.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>34.9</td> | - 1 | 90 | | | | | 4.1 | | | | | | 34.9 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 5 | 10 | 50 | 37.9 | 33.2 | 4.5 | 33.1 | 9.5 | 52.8 | 94.7 | 95.3 | 66.3 | 93.3 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 5 | 30 | 50 | 48.3 | 33.2 | 13.4 | 31.3 | 30.4 | 55.9 | 84.3 | 84.1 | 66.3 | 79.8 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 5 | 50 | 50 | 60.3 | 33.2 | 22.3 | 27.1 | 54.2 | 58.8 | 72.4 | 69.1 | 66.3 | 66.3 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 5 | 70 | 50 | 74.0 | 33.2 | 31.3 | 19.9 | 81.7 | 61.7 | 58.6 | 46.6 | 66.3 | 52.8 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 5 | 90 | 50 | 90.2 | 33.2 | 40.2 | 8.5 | 100.0 | 64.8 | 42.4 | 5.2 | 66.3 | 39.3 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 5 | 10 | 75 | 63.5 | 57.1 | 4.5 | 58.7 | 12.8 | 65.0 | 100.0 | 97.3 | 100.0 | 96.1 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - 1 | | | | 51.2 | | 53.3 | | | | | | 86.9 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - 1 | | | | | | | | | | | | 75.5 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - 1 | | | | | | | | | | | | 61.3 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | + | | | | l | | | | | | ! | 43.3 | | $ \begin{bmatrix} 6 & 50 & 0 & 31.4 & 12.6 & 20.0 & 0.0 & 37.6 & 46.8 & 18.9 & 0.0 & 25.1 \\ 6 & 70 & 0 & 52.3 & 19.2 & 28.0 & 0.0 & 66.0 & 57.5 & 24.7 & 0.0 & 38.5 \\ 6 & 90 & 0 & 80.7 & 27.0 & 36.1 & 0.0 & 100.0 & 66.4 & 27.5 & 0.0 & 54.1 \\ 6 & 10 & 25 & 17.5 & 14.1 & 4.0 & 13.1 & 6.7 & 40.1 & 39.1 & 89.7 & 28.3 \\ 6 & 30 & 25 & 29.2 & 17.5 & 12.0 & 13.4 & 23.4 & 48.6 & 40.8 & 70.5 & 35.0 \\ 6 & 50 & 25 & 43.7 & 21.1 & 20.0 & 12.3 & 45.3 & 55.7 & 40.6 & 50.7 & 42.2 \\ 6 & 70 & 25 & 61.9 & 25.0 & 28.0 & 9.6 & 73.7 & 62.0 & 38.1 & 26.3 & 50.0 \\ 6 & 90 & 25 & 85.0 & 29.2 & 36.1 & 4.3 & 100.0 & 67.7 & 31.7 & 0.0 & 58.3 \\ 6 & 10 & 50 & 36.0 & 31.4 & 4.0 & 31.7 & 9.3 & 57.1 & 89.5 & 95.5 & 62.8 \\ 6 & 30 & 50 & 46.5 & 31.4 & 12.0 & 30.7 & 30.2 & 60.2 & 79.0 & 84.8 & 62.8 \\ 6 & 50 & 50 & 58.5 & 31.4 & 20.0 & 27.2 & 54.3 & 63.1 & 67.0 & 70.1 & 62.8 \\ 6 & 90 & 50 & 89.6 & 31.4 & 28.0 & 20.4 & 82.5 & 66.0 & 52.9 & 46.9 & 62.8 \\ 6 & 90 & 50 & 89.6 & 31.4 & 28.0 & 20.4 & 82.5 & 66.0 & 52.9 & 46.9 & 62.8 \\ 6 & 90 & 50 & 89.6 & 31.4 & 36.1 & 8.9 & 100.0 & 69.0 & 35.9 & 0.0 & 62.8 \\ 6 & 10 & 75 & 61.9 & 55.3 & 4.0 & 57.5 & 13.0 & 69.2 & 100.0 & 97.5 & 100.0 \\ 6 & 30 & 75 & 68.9 & 49.3 & 12.0 & 53.1 & 39.2 & 69.3 & 100.0 & 97.5 & 100.0 \\ 6 & 50 & 75 & 76.6 & 43.7 & 20.0 & 45.2 & 65.7 & 69.5 & 98.3 & 79.6 & 87.4 \\ 6 & 70 & 75 & 85.0 & 38.5 & 28.0 & 32.7 & 93.0 & 69.8 & 69.1 & 59.4 & 77.0 \\ \hline \end{tabular}$ | - 1 | | | | | | | | | | | | 1.7 | | $ \begin{bmatrix} 6 & 70 & 0 & 52.3 & 19.2 & 28.0 & 0.0 & 66.0 & 57.5 & 24.7 & 0.0 & 38.5 \\ 6 & 90 & 0 & 80.7 & 27.0 & 36.1 & 0.0 & 100.0 & 66.4 & 27.5 & 0.0 & 54.1 \\ 6 & 10 & 25 & 17.5 & 14.1 & 4.0 & 13.1 & 6.7 & 40.1 & 39.1 & 89.7 & 28.3 \\ 6 & 30 & 25 & 29.2 & 17.5 & 12.0 & 13.4 & 23.4 & 48.6 & 40.8 & 70.5 & 35.0 \\ 6 & 50 & 25 & 43.7 & 21.1 & 20.0 & 12.3 & 45.3 & 55.7 & 40.6 & 50.7 & 42.2 \\ 6 & 70 & 25 & 61.9 & 25.0 & 28.0 & 9.6 & 73.7 & 62.0 & 38.1 & 26.3 & 50.0 \\ 6 & 90 & 25 & 85.0 & 29.2 & 36.1 & 4.3 & 100.0 & 67.7 & 31.7 & 0.0 & 58.3 \\ 6 & 10 & 50 & 36.0 & 31.4 & 4.0 & 31.7 & 9.3 & 57.1 & 89.5 & 95.5 & 62.8 \\ 6 & 30 & 50 & 46.5 & 31.4 & 12.0 & 30.7 & 30.2 & 60.2 & 79.0 & 84.8 & 62.8 \\ 6 & 50 & 50 & 58.5 & 31.4 & 20.0 & 27.2 & 54.3 & 63.1 & 67.0 & 70.1 & 62.8 \\ 6 & 90 & 50 & 89.6 & 31.4 & 36.1 & 8.9 & 100.0 & 69.0 & 35.9 & 0.0 & 62.8 \\ 6 & 90 & 50 & 89.6 & 31.4 & 36.1 & 8.9 & 100.0 & 69.0 & 35.9 & 0.0 & 62.8 \\ 6 & 10 & 75 & 61.9 & 55.3 & 4.0 & 57.5 & 13.0 & 69.2 & 100.0 & 97.5 & 100.0 \\ 6 & 30 & 75 & 68.9 & 49.3 & 12.0 & 53.1 & 39.2 & 69.3 & 100.0 & 90.6 & 98.6 \\ 6 & 50 & 75 & 76.6 & 43.7 & 20.0 & 45.2 & 65.7 & 69.5 & 98.3 & 79.6 & 87.4 \\ 6 & 70 & 75 & 85.0 & 38.5 & 28.0 & 32.7 & 93.0 & 69.8 & 69.1 & 59.4 & 77.0 \\ \end{bmatrix}$ | - 1 | | | | | | | | | | | | 12.3
20.2 | | $ \begin{bmatrix} 6 & 90 & 0 & 80.7 & 27.0 & 36.1 & 0.0 & 100.0 & 66.4 & 27.5 & 0.0 & 54.1 \\ 6 & 10 & 25 & 17.5 & 14.1 & 4.0 & 13.1 & 6.7 & 40.1 & 39.1 & 89.7 & 28.3 \\ 6 & 30 & 25 & 29.2 & 17.5 & 12.0 & 13.4 & 23.4 & 48.6 & 40.8 & 70.5 & 35.0 \\ 6 & 50 & 25 & 43.7 & 21.1 & 20.0 & 12.3 & 45.3 & 55.7 & 40.6 & 50.7 & 42.2 \\ 6 & 70 & 25 & 61.9 & 25.0 & 28.0 & 9.6 & 73.7 & 62.0 & 38.1 & 26.3 & 50.0 \\ 6 & 90 & 25 & 85.0 & 29.2 & 36.1 & 4.3 & 100.0 & 67.7 & 31.7 & 0.0 & 58.3 \\ 6 & 10 & 50 & 36.0 & 31.4 & 4.0 & 31.7 & 9.3 & 57.1 & 89.5 & 95.5 & 62.8 \\ 6 & 30 & 50 & 46.5 & 31.4 & 12.0 & 30.7 & 30.2 & 60.2 & 79.0 & 84.8 & 62.8 \\ 6 & 50 & 50 & 58.5 & 31.4 & 20.0 & 27.2 & 54.3 & 63.1 & 67.0 & 70.1 & 62.8 \\ 6 & 90 & 50 & 89.6 & 31.4 & 28.0 & 20.4 & 82.5 & 66.0 & 52.9 & 46.9 & 62.8 \\ 6 & 90 & 50 & 89.6 & 31.4 & 36.1 & 8.9 & 100.0 & 69.0 & 35.9 & 0.0 & 62.8 \\ 6 & 10 & 75 & 61.9 & 55.3 & 4.0 & 57.5 & 13.0 & 69.2 & 100.0 & 97.5 & 100.0 \\ 6 & 30 & 75 & 68.9 & 49.3 & 12.0 & 53.1 & 39.2 & 69.3 & 100.0 & 90.6 & 98.6 \\ 6 & 50 & 75 & 76.6 & 43.7 & 20.0 & 45.2 & 65.7 & 69.5 & 98.3 & 79.6 & 87.4 \\ 6 & 70 & 75 & 85.0 & 38.5 & 28.0 & 32.7 & 93.0 & 69.8 & 69.1 & 59.4 & 77.0 \\ \end{bmatrix}$ | | | | | | | | | | | | | 20.2
27.1 | | 6 10 25 17.5 14.1 4.0 13.1 6.7 40.1 39.1 89.7 28.3 6 30 25 29.2 17.5 12.0 13.4 23.4 48.6 40.8 70.5 35.0 6 50 25 43.7 21.1 20.0 12.3 45.3 55.7 40.6 50.7 42.2 6 70 25 61.9 25.0 28.0 9.6 73.7 62.0 38.1 26.3 50.0 6 90 25 85.0 29.2 36.1 4.3 100.0 67.7 31.7 0.0 58.3 6 10 50 36.0 31.4 4.0 31.7 9.3 57.1 89.5 95.5 62.8 6 30 50 46.5 31.4 12.0 30.7 30.2 60.2 79.0 84.8 62.8 6 50 50 58.5 31.4 | - 1 | | | | | | | | | | | | 33.3 | | $ \begin{bmatrix} 6 \\ 6 \\ 50 \\ 50 \\ 25 \\ 43.7 \\ 21.1 \\ 20.0 \\ 12.3 \\ 45.3 \\ 45.3 \\ 55.7 \\ 40.6 \\ 60.0 \\ 38.1 \\ 26.3 \\ 50.7 \\ 40.6 \\ 50.7 \\ 42.2 \\ 60.7 \\ 42.2 \\ 60.7 \\ 42.2 \\ 60.7 \\ 42.2 \\ 60.7 \\
60.7 \\ 60$ | | | | | | | | | | | | | 85.8 | | $ \begin{bmatrix} 6 \\ 6 \\ 70 \\ 25 \\ 61.9 \\ 25.0 \\ 25 \\ 85.0 \\ 29.2 \\ 36.1 \\ 43.7 \\ 21.1 \\ 20.0 \\ 28.0 \\ 9.6 \\ 73.7 \\ 62.0 \\ 38.1 \\ 26.3 \\ 38.1 \\ 26.3 \\ 38.1 \\ 26.3 \\ 50.0 \\ 38.1 \\ 26.3 \\ 50.0 \\ 38.1 \\ 26.3 \\ 50.0 \\ 50.0 \\ 58.3 \\ 60.0 \\ 50.0 \\ 58.3 \\ 60.0 \\ 50.0 \\ 60.0 \\ 50.0 \\ 60.0 \\ 50.$ | | | | | | | | | | | | | 65.6 | | $ \begin{bmatrix} 6 \\ 6 \\ 90 \\ 25 \\ 85.0 \\ 29.2 \\ 36.1 \\ 4.3 \\ 100.0 \\ 31.7 \\ 9.3 \\ 57.1 \\ 9.3 \\ 57.1 \\ 89.5 \\ 95.5 \\ 62.8 \\ 60.2 \\ 79.0 \\ 84.8 \\ 62.8 \\ 60.2 \\ 60.2 \\ 79.0 \\ 84.8 \\ 62.8 \\ 60.2 \\ 60.0 \\ 70.0 \\ 60$ | | | | | | | | | | | | | 52.5 | | $ \begin{bmatrix} 6 & 90 & 25 & 85.0 & 29.2 & 36.1 & 4.3 & 100.0 & 67.7 & 31.7 & 0.0 & 58.3 \\ 6 & 10 & 50 & 36.0 & 31.4 & 4.0 & 31.7 & 9.3 & 57.1 & 89.5 & 95.5 & 62.8 \\ 6 & 30 & 50 & 46.5 & 31.4 & 12.0 & 30.7 & 30.2 & 60.2 & 79.0 & 84.8 & 62.8 \\ 6 & 50 & 50 & 58.5 & 31.4 & 20.0 & 27.2 & 54.3 & 63.1 & 67.0 & 70.1 & 62.8 \\ 6 & 70 & 50 & 72.6 & 31.4 & 28.0 & 20.4 & 82.5 & 66.0 & 52.9 & 46.9 & 62.8 \\ 6 & 90 & 50 & 89.6 & 31.4 & 36.1 & 8.9 & 100.0 & 69.0 & 35.9 & 0.0 & 62.8 \\ 6 & 10 & 75 & 61.9 & 55.3 & 4.0 & 57.5 & 13.0 & 69.2 & 100.0 & 97.5 & 100.0 \\ 6 & 30 & 75 & 68.9 & 49.3 & 12.0 & 53.1 & 39.2 & 69.3 & 100.0 & 90.6 & 98.6 \\ 6 & 50 & 75 & 76.6 & 43.7 & 20.0 & 45.2 & 65.7 & 69.5 & 98.3 & 79.6 & 87.4 \\ 6 & 70 & 75 & 85.0 & 38.5 & 28.0 & 32.7 & 93.0 & 69.8 & 69.1 & 59.4 & 77.0 \\ \hline \end{tabular} $ | - 1 | | | | | | | | | | | | 43.9 | | 6 10 50 36.0 31.4 4.0 31.7 9.3 57.1 89.5 95.5 62.8 6 30 50 46.5 31.4 12.0 30.7 30.2 60.2 79.0 84.8 62.8 6 50 50 58.5 31.4 20.0 27.2 54.3 63.1 67.0 70.1 62.8 6 70 50 72.6 31.4 28.0 20.4 82.5 66.0 52.9 46.9 62.8 6 90 50 89.6 31.4 36.1 8.9 100.0 69.0 35.9 0.0 62.8 6 10 75 61.9 55.3 4.0 57.5 13.0 69.2 100.0 97.5 100.0 6 30 75 68.9 49.3 12.0 53.1 39.2 69.3 100.0 90.6 98.6 6 50 75 76.6 43.7 | | | | | | | | | | | | | 38.2 | | 6 30 50 46.5 31.4 12.0 30.7 30.2 60.2 79.0 84.8 62.8 6 50 50 58.5 31.4 20.0 27.2 54.3 63.1 67.0 70.1 62.8 6 70 50 72.6 31.4 28.0 20.4 82.5 66.0 52.9 46.9 62.8 6 90 50 89.6 31.4 36.1 8.9 100.0 69.0 35.9 0.0 62.8 6 10 75 61.9 55.3 4.0 57.5 13.0 69.2 100.0 97.5 100.0 6 30 75 68.9 49.3 12.0 53.1 39.2 69.3 100.0 90.6 98.6 6 50 75 76.6 43.7 20.0 45.2 65.7 69.5 98.3 79.6 87.4 6 70 75 85.0 38.5 | | | | | | | | | | | | | 93.6 | | 6 50 50 58.5 31.4 20.0 27.2 54.3 63.1 67.0 70.1 62.8 6 70 50 72.6 31.4 28.0 20.4 82.5 66.0 52.9 46.9 62.8 6 90 50 89.6 31.4 36.1 8.9 100.0 69.0 35.9 0.0 62.8 6 10 75 61.9 55.3 4.0 57.5 13.0 69.2 100.0 97.5 100.0 6 30 75 68.9 49.3 12.0 53.1 39.2 69.3 100.0 90.6 98.6 6 50 75 76.6 43.7 20.0 45.2 65.7 69.5 98.3 79.6 87.4 6 70 75 85.0 38.5 28.0 32.7 93.0 69.8 69.1 59.4 77.0 | - 1 | | | | | | | | | | | | 80.8 | | 6 70 50 72.6 31.4 28.0 20.4 82.5 66.0 52.9 46.9 62.8 6 90 50 89.6 31.4 36.1 8.9 100.0 69.0 35.9 0.0 62.8 6 10 75 61.9 55.3 4.0 57.5 13.0 69.2 100.0 97.5 100.0 6 30 75 68.9 49.3 12.0 53.1 39.2 69.3 100.0 90.6 98.6 6 50 75 76.6 43.7 20.0 45.2 65.7 69.5 98.3 79.6 87.4 6 70 75 85.0 38.5 28.0 32.7 93.0 69.8 69.1 59.4 77.0 | | | | | | l | | | | | | | 68.1 | | 6 90 50 89.6 31.4 36.1 8.9 100.0 69.0 35.9 0.0 62.8 6 10 75 61.9 55.3 4.0 57.5 13.0 69.2 100.0 97.5 100.0 6 30 75 68.9 49.3 12.0 53.1 39.2 69.3 100.0 90.6 98.6 6 50 75 76.6 43.7 20.0 45.2 65.7 69.5 98.3 79.6 87.4 6 70 75 85.0 38.5 28.0 32.7 93.0 69.8 69.1 59.4 77.0 | - 1 | | | | | l | | | | | | | 55.3 | | 6 30 75 68.9 49.3 12.0 53.1 39.2 69.3 100.0 90.6 98.6 6 50 75 76.6 43.7 20.0 45.2 65.7 69.5 98.3 79.6 87.4 6 70 75 85.0 38.5 28.0 32.7 93.0 69.8 69.1 59.4 77.0 | | | | | | | | | | | | | 42.5 | | 6 50 75 76.6 43.7 20.0 45.2 65.7 69.5 98.3 79.6 87.4 6 70 75 85.0 38.5 28.0 32.7 93.0 69.8 69.1 59.4 77.0 | 6 | 10 | 75 | 61.9 | 55.3 | 4.0 | 57.5 | 13.0 | 69.2 | 100.0 | 97.5 | 100.0 | 96.4 | | 6 70 75 85.0 38.5 28.0 32.7 93.0 69.8 69.1 59.4 77.0 | 6 | 30 | 75 | 68.9 | 49.3 | 12.0 | 53.1 | 39.2 | 69.3 | 100.0 | 90.6 | 98.6 | 87.8 | | | 6 | 50 | 75 | 76.6 | 43.7 | 20.0 | 45.2 | 65.7 | 69.5 | 98.3 | 79.6 | 87.4 | 77.1 | | 6 90 75 94.5 33.7 36.1 13.8 100.0 70.3 40.2 10.2 67.3 | 6 | | | 85.0 | | l | 32.7 | | | | | 77.0 | 63.6 | | | 6 | 1 90_ | 75_ | 94.5_ | 33.7_ | 36.1 | _ 13.8 _ | 100.0 | 70.3 _ |
40.2 | 10.3 _ | 67.3 _ | 46.4 | **Table 7:** Model parameters for the LP model $LP\left(k,h_{pathway}^{2},c_{R}\right)$ for quantitative traits. (cont.) | k | $h_{path}^2(\%)$ | $c_R(\%)$ | $r_{MZ}(\%)$ | $r_{DZ}(\%)$ | $h_{all}^2(\%)$ | V _c (%) | $h_{pop}^{2(ACE)}(\%)$ | $\pi_{nhan}^{(ACE)}(\%)$ | $h_{pop}^{2(ADE)}(\%)$ | $\pi_{nhan}^{(ADE)}(\%)$ | $h_{pop}^{2(PO)}(\%)$ | $\pi^{(PO)}_{phan}(\%)$ | |----------------|------------------|----------------|--------------------|--------------|---------------------|---------------------|------------------------|----------------------------|------------------------|--------------------------|-----------------------|-------------------------| | 7 | 10 | 0 | 4.0 | 1.8 | 3.6 | 0.0 | 4.2 | $\frac{\pi_{phan}}{14.2}$ | 3.4 | $\frac{\pi_{phan}}{0.0}$ | 3.7 | 0.7 | | 7 | 30 | 0 | 14.7 | 6.3 | 10.9 | 0.0 | 16.9 | 35.3 | 10.5 | 0.0 | 12.6 | 13.2 | | 7 | 50 | 0 | 29.9 | 11.7 | 18.2 | 0.0 | 36.5 | 50.0 | 16.8 | 0.0 | 23.4 | 22.0 | | 7 | 70 | 0 | 50.7 | 18.1 | 25.5 | 0.0 | 65.3 | 60.9 | 21.6 | 0.0 | 36.2 | 29.5 | | 7 | 90 | 0 | 79.8 | 25.6 | 32.8 | 0.0 | 100.0 | 69.7 | 22.8 | 0.0 | 51.3 | 36.0 | | 7 | 10 | 25 | 16.4 | 13.2 | 3.6 | 12.4 | 6.4 | 43.1 | 36.3 | 90.0 | 26.4 | 86.2 | | 7 | 30 | 25 | 27.7 | 16.4 | 10.9 | 13.0 | 22.7 | 51.8 | 37.8 | 71.1 | 32.8 | 66.6 | | 7 | 50 | 25 | 42.1 | 19.9 | 18.2 | 12.2 | 44.6 | 59.1 | 37.3 | 51.2 | 39.7 | 54.1 | | 7 | 70 | 25 | 60.4 | 23.6 | 25.5 | 9.7 | 73.6 | 65.3 | 34.1 | 25.2 | 47.3 | 46.0 | | 7 | 90 | 25 | 84.2 | 27.7 | 32.8 | 4.5 | 100.0 | 71.0 | 26.7 | 0.0 | 55.5 | 40.9 | | 7 | 10 | 50 | 34.5 | 29.9 | 3.6 | 30.6 | 9.2 | 60.5 | 85.1 | 95.7 | 59.8 | 93.9 | | 7 | 30 | 50 | 44.9 | 29.9 | 10.9 | 30.1 | 30.0 | 63.5 | 74.7 | 85.4 | 59.8 | 81.7 | | 7 | 50 | 50 | 57.1 | 29.9 | 18.2 | 27.2 | 54.3 | 66.5 | 62.6 | 70.9 | 59.8 | 69.5 | | 7 | 70 | 50 | 71.5 | 29.9 | 25.5 | 20.7 | 83.1 | 69.3 | 48.2 | 47.0 | 59.8 | 57.3 | | 7 | 90 | 50 | 89.0 | 29.9 | 32.8 | 9.2 | 100.0 | 72.2 | 30.6 | 0.0 | 59.8 | 45.2 | | 7 | 10 | 75 | 60.4 | 53.8 | 3.6 | 56.5 | 13.2 | 72.4 | 100.0 | 97.6 | 100.0 | 96.6 | | 7 | 30 | 75 | 67.6 | 47.8 | 10.9 | 52.9 | 39.7 | 72.5 | 100.0 | 91.1 | 95.5 | 88.6 | | 7 | 50 | 75 | 75.5 | 42.1 | 18.2 | 45.6 | 66.7 | 72.7 | 93.1 | 80.4 | 84.3 | 78.4 | | 7 | 70 | 75 | 84.2 | 37.0 | 25.5 | 33.5 | 94.6 | 73.0 | 63.6 | 59.9 | 73.9 | 65.5 | | $\frac{7}{8}$ | 90 | 75_ | 94.1_ | 32.2_ | 32.8 _ | _ 14.4 | 100.0 | 73.5 | 34.5 | 5.0 | 64.3 _ | 49.0 | | | 10 | 0 | 3.6 | 1.7 | 3.4 | 0.0 | 4.0 | 15.3 | 3.0 | 0.0 | 3.3 | 0.0 | | 8 | 30 | 0 | 13.9 | 5.8 | 10.1 | 0.0 | 16.1 | 37.6 | 9.5 | 0.0 | 11.7 | 13.9 | | 8 | 50 | 0 | 28.7 | 11.0 | 16.8 | 0.0 | 35.4 | 52.7 | 15.1 | 0.0 | 21.9 | 23.5 | | 8 | 70 | 0 | 49.4 | 17.1 | 23.5 | 0.0 | 64.6 | 63.7 | 19.0 | 0.0 | 34.2 | 31.5 | | 8 | 90 | 0 | 79.0 | 24.5 | 30.2 | 0.0 | 100.0 | 72.3 | 19.0 | 0.0 | 49.0 | 38.4 | | 8 | 10 | 25 | 15.5 | 12.4 | 3.4 | 11.8 | 6.2 | 45.6 | 34.1 | 90.2 | 24.8 | 86.5 | | 8 | 30 | 25 | 26.5 | 15.5 | 10.1 | 12.6 | 22.1 | 54.5 | 35.3 | 71.5 | 30.9 | 67.5 | | 8 | 50 | 25 | 40.8 | 18.8 | 16.8 | 12.1 | 43.9 | 61.9 | 34.5 | 51.5 | 37.7 | 55.5 | | 8 | 70 | 25 | 59.2 | 22.5 | 23.5 | 9.8 | 73.4 | 68.0 | 30.8 | 23.9 | 45.0 | 47.9 | | 8 | 90 | 25 | 83.6 | 26.5 | 30.2 | 4.6 | 100.0 | 73.6 | 22.5 | 0.0 | 53.1 | 43.1 | | 8 | 10 | 50 | 33.2 | 28.7 | 3.4 | 29.6 | 9.1 | 63.2 | 81.4 | 95.9 | 57.3 | 94.2 | | 8 | 30 | 50 | 43.6 | 28.7 | 10.1 | 29.7 | 29.8 | 66.2 | 71.1 | 85.9 | 57.3 | 82.5 | | 8 | 50 | 50 | 55.8 | 28.7 | 16.8 | 27.1 | 54.3 | 69.1 | 58.8 | 71.5 | 57.3 | 70.8 | | 8 | 70 | 50 | 70.5 | 28.7 | 23.5 | 21.0 | 83.6 | 71.9 | 44.2 | 46.9 | 57.3 | 59.1 | | 8 | 90 | 50 | 88.5 | 28.7 | 30.2 | 9.6 | 100.0 | 74.8 | 26.1 | 0.0 | 57.3 | 47.4 | | 8 | 10 | 75 | 59.2 | 52.5 | 3.4 | 55.6 | 13.4 | 74.9 | 100.0 | 97.8 | 100.0 | 96.8 | | 8 | 30 | 75 | 66.5 | 46.4 | 10.1 | 52.6 | 40.2 | 75.0 | 100.0 | 91.6 | 92.8 | 89.2 | | 8 | 50 | 75 | 74.6 | 40.8 | 16.8 | 45.9 | 67.6 | 75.2 | 88.6 | 81.1 | 81.6 | 79.5 | | 8 8 | 70
90 | 75
75 | 83.6
93.8 | 35.6
30.9 | 23.5
30.2 | 34.2
14.9 | 95.9
100.0 | 75.5
76.0 | 59.0
29.7 | 60.2
0.0 | 71.3
61.8 | 67.1
51.2 | | $+\frac{8}{9}$ | $\frac{90}{10}$ | $\frac{0}{10}$ | $\frac{93.8}{3.4}$ | 30.9
1.5 | $-\frac{30.2}{3.1}$ | $-\frac{14.9}{0.0}$ | $\frac{100.0}{3.7}$ | $ \frac{76.0}{16.3}$ $-$ | $\frac{29.7}{2.7}$ | 0.0 - | $\frac{61.8}{3.0}-$ | $\frac{51.2}{0.0}$ | | 9 | 30 | 0 | 13.2 | 5.4 | 9.3 | 0.0 | 15.4 | 39.5 | 8.6 | 0.0 | 10.9 | 14.4 | | 9 | 50 | 0 | 27.6 | 10.3 | 9.5
15.5 | 0.0 | 34.5 | 55.0 | 13.7 | 0.0 | 20.7 | 24.7 | | 9 | 70 | 0 | 48.3 | 16.3 | 21.8 | 0.0 | 64.0 | 66.0 | 16.9 | 0.0 | 32.6 | 33.2 | | 9 | 90 | 0 | 78.2 | 23.5 | 28.0 | 0.0 | 100.0 | 74.5 | 15.6 | 0.0 | 46.9 | 40.4 | | 9 | 10 | 25 | 14.7 | 11.7 | 3.1 | 11.3 | 6.0 | 47.7 | 32.2 | 90.3 | 23.4 | 86.7 | | 9 | 30 | 25 | 25.5 | 14.7 | 9.3 | 12.3 | 21.6 | 56.8 | 33.3 | 71.9 | 29.4 | 68.2 | | 9 | 50 | 25 | 39.6 | 18.0 | 15.5 | 12.0 | 43.4 | 64.1 | 32.2 | 51.7 | 35.9 | 56.7 | | 9 | 70 | 25 | 58.1 | 21.5 | 21.8 | 9.9 | 73.2 | 70.3 | 28.0 | 22.4 | 43.1 | 49.5 | | 9 | 90 | 25 | 83.0 | 25.5 | 28.0 | 4.7 | 100.0 | 75.7 | 18.9 | 0.0 | 51.0 | 45.1 | | 9 | 10 | 50 | 32.1 | 27.6 | 3.1 | 28.7 | 9.0 | 65.5 | 78.3 | 96.0 | 55.2 | 94.4 | | 9 | 30 | 50 | 42.4 | 27.6 | 9.3 | 29.2 | 29.6 | 68.5 | 68.0 | 86.3 | 55.2 | 83.1 | | 9 | 50 | 50 | 54.7 | 27.6 | 15.5 | 27.1 | 54.2 | 71.3 | 55.7 | 72.1 | 55.2 | 71.8 | | 9 | 70 | 50 | 69.6 | 27.6 | 21.8 | 21.3 | 84.0 | 74.1 | 40.8 | 46.6 | 55.2 | 60.6 | | 9 | 90 | 50 | 88.1 | 27.6 | 28.0 | 9.8 | 100.0 | 76.9 | 22.3 | 0.0 | 55.2 | 49.3 | | 9 | 10 | 75 | 58.1 | 51.4 | 3.1 | 54.8 | 13.5 | 76.9 | 100.0 | 97.9 | 100.0 | 97.0 | | 9 | 30 | 75 | 65.6 | 45.3 | 9.3 | 52.4 | 40.6 | 77.0 | 100.0 | 91.9 | 90.5 | 89.7 | | 9 | 50 | 75 | 73.8 | 39.6 | 15.5 | 46.2 | 68.3 | 77.2 | 84.8 | 81.7 | 79.3 | 80.4 | | 9 | 70 | 75 | 83.0 | 34.5 | 21.8 | 34.7 | 97.0 | 77.6 | 55.0 | 60.4 | 69.0 | 68.5 | | 9 | 90 | 75 | 93.6 | 29.8 | 28.0 | 15.3 | 100.0 | 78.1 | 25.6 | 0.0 | 59.6 | 53.0 | | | . | | | | | . – – – | . – – – – – . | | . – – – – – . | | . – – – – – | . – – – – 1 | **Table 7:** Model parameters for the LP model $LP\left(k,h_{pathway}^{2},c_{R}\right)$ for quantitative traits. (cont.) | k | $h_{path}^2(\%)$ | $c_R(\%)$ | $r_{MZ}(\%)$ | $r_{DZ}(\%)$ | $h_{all}^2(\%)$ | $V_c(\%)$ | $h_{pop}^{2(ACE)}(\%)$ | $\pi_{phan}^{(ACE)}(\%)$ | $h_{pop}^{2(ADE)}(\%)$ | $\pi_{phan}^{(ADE)}(\%)$ | $h_{pop}^{2(PO)}(\%)$ | $\pi_{phan}^{(PO)}(\%)$ | |----|------------------|-----------|--------------|--------------|-----------------|-----------|------------------------|--------------------------|------------------------|--------------------------|-----------------------|-------------------------| | 10 | 10 | 0 | 3.1 | 1.4 | 2.9 | 0.0 | 3.5 | 17.1 | 2.4 | 0.0 | 2.8 | 0.0 | | 10 | 30 | 0 | 12.5 | 5.1 | 8.7 | 0.0 | 14.8 | 41.2 | 7.9 | 0.0 | 10.2 | 14.8 | | 10 | 50 | 0 | 26.6 | 9.8 | 14.5 | 0.0 | 33.7 | 56.9 | 12.5 | 0.0 | 19.6 | 25.8 | | 10 | 70 | 0 | 47.2 | 15.6 | 20.3 | 0.0 | 63.4 | 67.9 | 15.0 | 0.0 | 31.1 | 34.7 | | 10 | 90 | 0 | 77.6 | 22.6 | 26.1 | 0.0 | 100.0 | 76.2 | 12.8 | 0.0 | 45.2 | 42.1 | | 10 | 10 | 25 | 14.0 | 11.1 | 2.9 | 10.9 | 5.8 | 49.6 | 30.5 | 90.5 | 22.2 | 86.9 | | 10 | 30 | 25 | 24.6 | 14.0 | 8.7 | 12.0 | 21.1 | 58.8 | 31.4 | 72.3 | 28.0 | 68.9 | | 10 | 50 | 25 | 38.6 | 17.2 | 14.5 | 12.0 | 42.8 | 66.1 | 30.1 | 51.8 | 34.4 | 57.8 | | 10 | 70 | 25 | 57.2 | 20.7 | 20.3 | 10.0 | 73.0 | 72.1 | 25.6 | 20.7 | 41.4 | 50.9 | | 10 | 90 | 25 | 82.5 | 24.6 | 26.1 | 4.8 | 100.0 | 77.4 | 15.8 | 0.0 | 49.1 | 46.8 | | 10 | 10 | 50 | 31.1 | 26.6 | 2.9 | 28.0 | 8.9 | 67.4 | 75.5 | 96.2 | 53.3 | 94.6 | | 10 | 30 | 50 | 41.3 | 26.6 | 8.7 | 28.8 | 29.4 | 70.4 | 65.2 | 86.6 | 53.3 | 83.7 | | 10 | 50 | 50 | 53.7 | 26.6 | 14.5 | 27.1 | 54.1 | 73.2 | 52.9 | 72.5 | 53.3 | 72.8 | | 10 | 70 | 50 | 68.8 | 26.6 | 20.3 | 21.5 | 84.2 | 75.9 | 37.8 | 46.3 | 53.3 | 61.9 | | 10 | 90 | 50 | 87.7 | 26.6 | 26.1 | 10.1 | 100.0 | 78.6 | 18.9 | 0.0 | 53.3 | 51.0 | | 10 | 10 | 75 | 57.2 | 50.4 | 2.9 | 54.0 | 13.6 | 78.6 | 100.0 | 98.0 | 100.0 | 97.1 | | 10 | 30 | 75 | 64.7 | 44.2 | 8.7 | 52.2 | 41.0 | 78.7 | 100.0 | 92.2 | 88.4 | 90.1 | | 10 | 50 | 75 | 73.1 | 38.6 | 14.5 | 46.4 | 68.9 | 78.9 | 81.4 | 82.2 | 77.2 | 81.2 | | 10 | 70 | 75 | 82.5 | 33.5 | 20.3 | 35.2 | 97.9 | 79.2 | 51.5 | 60.5 | 67.0 | 69.6 | | 10 | 90 | 75 | 93.3 | 28.8 | 26.1 | 15.7 | 100.0 | 79.7 | 22.0 | 0.0 | 57.6 | 54.7 | #### Table 8: For each choice of the model parameters $(k, h_{pathway}^2, c_R \text{ and } \mu)$, we calculated relevant genetic and population parameters. - V_c is the fraction of total *phenotypic* variance for the trait attributable to shared environment. (Recall that c_R is the fraction of the *environmental* variance for each pathway attributable to shared environment.) - λ_{MZ} and λ_s are the monozygotic twin and sibling relative risks for disease, respectively. - h_{all}^2 is the true narrow-sense heritability (fraction of phenotypic variance explained by an additive model including all genetic variants) on the liability scale. - $h_{pop}^{2(ACE)}, h_{pop}^{2(ADE)}$ and $h_{pop}^{2(PO)}$ are the apparent heritabilities on the liability scale, calculated using these estimators. (See Section 1). - $\pi_{phan}^{(ACE)}, \pi_{phan}^{(ADE)}$ and $\pi_{phan}^{(PO)}$) are the missing heritabilities associated with each of the apparent heritabilities. (See Section 1). **Table 8:** Model parameters for the LP model $LP_{\Delta}(k, h_{pathway}^2, c_R, \mu)$ for disease traits. | k | $h_{path}^2(\%)$ | $c_R(\%)$ | μ(%) | λ_{MZ} | λ_s | $h_{all}^2(\%)$ | $V_c(\%)$ | $h_{pop}^{2(ACE)}(\%)$ | $\pi_{phan}^{(ACE)}(\%)$ | $h_{pop}^{2(ADE)}(\%)$ | $\pi_{phan}^{(ADE)}(\%)$ | $h_{pop}^{2(PO)}(\%)$ | $\pi^{(PO)}_{phan}(\%)$ | |-----|------------------|-----------|-------------|----------------|--------------|-----------------|---------------------|------------------------
--------------------------|------------------------|--------------------------|-----------------------|-------------------------| | 1 | 10 | 0 | 0.1 | 2.8 | 1.7 | 10.0 | 0.0 | 10.0 | 0.0 | 10.0 | 0.0 | 10.0 | 0.0 | | 1 | 10 | 0 | 1.0 | 1.9 | 1.4 | 10.0 | 0.0 | 10.0 | 0.0 | 10.0 | 0.0 | 10.0 | 0.0 | | 1 | 10 | 0 | 10.0 | 1.3 | 1.2 | 10.0 | 0.0 | 10.0 | 0.0 | 10.0 | 0.0 | 10.0 | 0.0 | | 1 | 30 | 0 | 0.1 | 14.9 | 4.5 | 30.0 | 0.0 | 30.0 | 0.0 | 30.0 | 0.0 | 30.0 | 0.0 | | 1 | 30 | 0 | 1.0 | 5.6 | 2.6 | 30.0 | 0.0 | 30.0 | 0.0 | 30.0 | 0.0 | 30.0 | 0.0 | | 1 | 30 | 0 | 10.0 | 2.2 | 1.5 | 30.0 | 0.0 | 30.0 | 0.0 | 30.0 | 0.0 | 30.0 | 0.0 | | 1 | 50 | 0 | 0.1 | 54.3 | 10.3 | 50.0 | 0.0 | 50.0 | 0.1 | 50.0 | 0.1 | 50.0 | 0.1 | | 1 | 50 | 0 | 1.0 | 12.9 | 4.4 | 50.0 | 0.0 | 50.0 | 0.0 | 50.0 | 0.0 | 50.0 | 0.0 | | 1 | 50 | 0 | 10.0 | 3.2 | 1.9 | 50.0 | 0.0 | 50.0 | 0.0 | 50.0 | 0.0 | 50.0 | 0.0 | | 1 | 70 | 0 | 0.1 | 159.6 | 21.2 | 70.0 | 0.0 | 70.0 | 0.0 | 70.0 | 0.0 | 70.0 | 0.0 | | 1 | 70 | 0 | 1.0 | 26.7 | 7.0 | 70.0 | 0.0 | 70.0 | 0.0 | 70.0 | 0.0 | 70.0 | 0.0 | | 1 | 70 | 0 | 10.0 | 4.7 | 2.4 | 70.0 | 0.0 | 70.0 | 0.0 | 70.0 | 0.0 | 70.0 | 0.0 | | 1 1 | 90
90 | 0 | 0.1
1.0 | 440.7
54.2 | 40.3
10.6 | 90.0
90.0 | 0.0 | 90.0
90.0 | 0.0 | 90.0
90.0 | 0.0
0.0 | 90.0
90.0 | 0.0
0.0 | | 1 | 90 | 0 | 10.0 | 6.9 | 2.9 | 90.0 | 0.0 | 90.0 | 0.0 | 90.0 | 0.0 | 90.0 | 0.0 | | 1 | 10 | 25 | 0.1 | 17.8 | 12.4 | 10.0 | 22.5 | 10.0 | 0.0 | 77.5 | 87.1 | 55.0 | 81.8 | | 1 | 10 | 25 | 1.0 | 6.2 | 4.9 | 10.0 | 22.5 | 10.0 | 0.0 | 77.5 | 87.1 | 55.0 | 81.8 | | 1 | 10 | 25 | 10.0 | 2.3 | 2.0 | 10.0 | 22.5 | 10.0 | 0.0 | 77.5 | 87.1 | 55.0 | 81.8 | | 1 | 30 | 25 | 0.1 | 46.8 | 17.8 | 30.0 | 17.5 | 30.0 | 0.0 | 82.5 | 63.6 | 65.0 | 53.8 | | 1 | 30 | 25 | 1.0 | 11.7 | 6.2 | 30.0 | 17.5 | 30.0 | 0.0 | 82.5 | 63.6 | 65.0 | 53.8 | | 1 | 30 | 25 | 10.0 | 3.1 | 2.3 | 30.0 | 17.5 | 30.0 | 0.0 | 82.5 | 63.6 | 65.0 | 53.8 | | 1 | 50 | 25 | 0.1 | 108.3 | 25.0 | 50.0 | 12.5 | 50.0 | 0.1 | 87.5 | 42.9 | 75.0 | 33.4 | | 1 | 50 | 25 | 1.0 | 20.5 | 7.8 | 50.0 | 12.5 | 50.0 | 0.0 | 87.5 | 42.9 | 75.0 | 33.3 | | 1 | 50 | 25 | 10.0 | 4.1 | 2.5 | 50.0 | 12.5 | 50.0 | 0.0 | 87.5 | 42.9 | 75.0 | 33.3 | | 1 | 70 | 25 | 0.1 | 232.6 | 34.5 | 70.0 | 7.5 | 70.0 | 0.0 | 92.5 | 24.3 | 85.0 | 17.6 | | 1 | 70 | 25 | 1.0 | 34.6 | 9.6 | 70.0 | 7.5 | 70.0 | 0.0 | 92.5 | 24.3 | 85.0 | 17.6 | | 1 | 70 | 25 | 10.0 | 5.4 | 2.8 | 70.0 | 7.5 | 70.0 | 0.0 | 92.5 | 24.3 | 85.0 | 17.6 | | 1 | 90 | 25 | 0.1 | 506.9 | 46.8 | 90.0 | 2.5 | 90.0 | 0.0 | 97.5 | 7.7 | 95.0 | 5.3 | | 1 | 90 | 25 | 1.0 | 60.0 | 11.7 | 90.0 | 2.5 | 90.0 | 0.0 | 97.5 | 7.7 | 95.0 | 5.3 | | 1 | 90 | 25 | 10.0 | 7.3 | 3.1 | 90.0 | 2.5 | 90.0 | 0.0 | 97.5 | 7.7 | 95.0 | 5.3 | | 1 | 10 | 50 | 0.1 | 72.1 | 54.3 | 10.0 | 45.0 | 10.0 | 0.0 | 100.0 | 93.1 | 100.0 | 90.0 | | 1 1 | 10
10 | 50
50 | 1.0
10.0 | 15.6
3.6 | 12.9
3.2 | 10.0
10.0 | 45.0 | 10.0 | 0.0 | 100.0
100.0 | 93.1 | 100.0
100.0 | 90.0
90.0 | | 1 | 30 | 50 | 0.1 | 123.5 | 54.3 | 30.0 | 45.0 35.0 | 10.0
30.0 | 0.0 | 100.0 | 93.1
77.8 | 100.0 | 70.0 | | 1 | 30 | 50 | 1.0 | 22.4 | 12.9 | 30.0 | 35.0 | 30.0 | 0.0 | 100.0 | 77.8 | 100.0 | 70.0 | | 1 | 30 | 50 | 10.0 | 4.3 | 3.2 | 30.0 | 35.0 | 30.0 | 0.0 | 100.0 | 77.8 | 100.0 | 70.0 | | 1 | 50 | 50 | 0.1 | 205.3 | 54.3 | 50.0 | 25.0 | 50.0 | 0.1 | 100.0 | 60.0 | 100.0 | 50.0 | | 1 | 50 | 50 | 1.0 | 31.7 | 12.9 | 50.0 | 25.0 | 50.0 | 0.0 | 100.0 | 60.0 | 100.0 | 50.0 | | 1 | 50 | 50 | 10.0 | 5.1 | 3.2 | 50.0 | 25.0 | 50.0 | 0.0 | 100.0 | 60.0 | 100.0 | 50.0 | | 1 | 70 | 50 | 0.1 | 339.0 | 54.3 | 70.0 | 15.0 | 70.0 | 0.0 | 100.0 | 39.1 | 100.0 | 30.0 | | 1 | 70 | 50 | 1.0 | 45.0 | 12.9 | 70.0 | 15.0 | 70.0 | 0.0 | 100.0 | 39.1 | 100.0 | 30.0 | | 1 | 70 | 50 | 10.0 | 6.2 | 3.2 | 70.0 | 15.0 | 70.0 | 0.0 | 100.0 | 39.1 | 100.0 | 30.0 | | 1 | 90 | 50 | 0.1 | 590.1 | 54.3 | 90.0 | 5.0 | 90.0 | 0.0 | 100.0 | 14.3 | 100.0 | 10.0 | | 1 | 90 | 50 | 1.0 | 67.0 | 12.9 | 90.0 | 5.0 | 90.0 | 0.0 | 100.0 | 14.3 | 100.0 | 10.0 | | 1 | 90 | 50 | 10.0 | 7.8 | 3.2 | 90.0 | 5.0 | 90.0 | 0.0 | 100.0 | 14.3 | 100.0 | 10.0 | | 1 | 10 | 75 | 0.1 | 232.6 | 181.1 | 10.0 | 67.5 | 10.0 | 0.0 | 100.0 | 95.3 | 100.0 | 93.1 | | 1 | 10 | 75 | 1.0 | 34.6 | 29.1 | 10.0 | 67.5 | 10.0 | 0.0 | 100.0 | 95.3 | 100.0 | 93.1 | | 1 | 10 | 75 | 10.0 | 5.4 | 4.9 | 10.0 | 67.5 | 10.0 | 0.0 | 100.0 | 95.3 | 100.0 | 93.1 | | 1 | 30 | 75 | 0.1 | 298.7 | 140.5 | 30.0 | 52.5 | 30.0 | 0.0 | 100.0 | 84.0 | 100.0 | 77.8 | | 1 | 30 | 75
75 | 1.0
10.0 | 41.1
5.9 | 24.5 | 30.0
30.0 | 52.5 52.5 | 30.0
30.0 | 0.0 | 100.0 | 84.0 | 100.0
100.0 | 77.8
77.8 | | 1 | 30
50 | 75
75 | 0.1 | 385.7 | 4.5
108.3 | 30.0
50.0 | $\frac{52.5}{37.5}$ | 50.0
50.0 | 0.0
0.1 | 100.0
100.0 | 84.0
69.3 | 100.0 | 77.8
60.0 | | 1 | 50 | 75
75 | 1.0 | 49.3 | 20.5 | 50.0 | 37.5
37.5 | 50.0 | 0.0 | 100.0 | 69.2 | 100.0 | 60.0 | | 1 | 50 | 75
75 | 10.0 | 6.5 | 4.1 | 50.0 | 37.5 | 50.0 | 0.0 | 100.0 | 69.2 | 100.0 | 60.0 | | 1 | 70 | 75 | 0.1 | 506.9 | 82.8 | 70.0 | 22.5 | 70.0 | 0.0 | 100.0 | 49.1 | 100.0 | 39.1 | | 1 | 70 | 75 | 1.0 | 60.0 | 17.1 | 70.0 | 22.5 | 70.0 | 0.0 | 100.0 | 49.1 | 100.0 | 39.1 | | 1 | 70 | 75 | 10.0 | 7.3 | 3.7 | 70.0 | 22.5 | 70.0 | 0.0 | 100.0 | 49.1 | 100.0 | 39.1 | | 1 | 90 | 75 | 0.1 | 704.9 | 62.7 | 90.0 | 7.5 | 90.0 | 0.0 | 100.0 | 20.0 | 100.0 | 14.3 | | 1 | 90 | 75 | 1.0 | 76.4 | 14.2 | 90.0 | 7.5 | 90.0 | 0.0 | 100.0 | 20.0 | 100.0 | 14.3 | | 1 | 90_ | 75_ | 10.0 | 8.4 | 3.4 | 90.0 | 7.5 | 90.0 | 0.0 | 100.0 | 20.0 | 100.0 | 14.3 | | | | | | | | | | | | | | | | **Table 8:** Model parameters for the LP model $LP_{\Delta}(k, h_{pathway}^2, c_R, \mu)$ for disease traits. (cont.) | k | $h_{path}^2(\%)$ | $c_R(\%)$ | μ(%) | λ_{MZ} | λ_s | $h_{all}^2(\%)$ | $V_c(\%)$ | $h_{pop}^{2(ACE)}$ (% | %) | $\pi_{phan}^{(ACE)}(\%)$ | $h_{pop}^{2(ADE)}(\%)$ | $\pi_{phan}^{(ADE)}(\%)$ | $h_{pop}^{2(PO)}(\%)$ | $\pi_{phan}^{(PO)}(\%)$ | |---|------------------|---------------------|-------------|----------------|-------------|-----------------|--------------|-----------------------|---------|--------------------------|------------------------|--------------------------|-----------------------|-------------------------| | 2 | 10 | 0 | 0.1 | 2.1 | 1.4 | 5.6 | 0.0 | | 7.5 | 26.2 | 5.7 | 1.8 | 6.3 | 11.5 | | 2 | 10 | 0 | 1.0 | 1.6 | 1.2 | 5.9 | 0.0 | 7 | 7.2 | 18.9 | 5.9 | 0.8 | 6.3 | 7.7 | | 2 | 10 | 0 | 10.0 | 1.2 | 1.1 | 6.5 | 0.0 | 7 | 7.2 | 10.2 | 6.5 | 0.2 | 6.7 | 3.8 | | 2 | 30 | 0 | 0.1 | 10.6 | 3.2 | 16.7 | 0.0 | 28 | 3.4 | 41.3 | 19.2 | 13.1 | 22.3 | 25.1 | | 2 | 30 | 0 | 1.0 | 4.2 | 2.0 | 17.6 | 0.0 | 27 | 7.0 | 34.9 | 18.8 | 6.5 | 21.5 | 18.3 | | 2 | 30 | 0 | 10.0 | 1.9 | 1.4 | 19.4 | 0.0 | 25 | 5.3 | 23.3 | 19.7 | 1.6 | 21.6 | 10.1 | | 2 | 50 | 0 | 0.1 | 42.5 | 7.2 | 27.8 | 0.0 | 50 | 0.8 | 45.3 | 36.0 | 22.7 | 40.9 | 32.1 | | 2 | 50 | 0 | 1.0 | 10.4 | 3.3 | 29.3 | 0.0 | 49 | 9.7 | 41.1 | 33.8 | 13.3 | 39.1 | 25.1 | | 2 | 50 | 0 | 10.0 | 2.8 | 1.7 | 32.4 | 0.0 | 47 | 7.2 | 31.4 | 33.6 | 3.6 | 38.1 | 15.1 | | 2 | 70 | 0 | 0.1 | 137.8 | 15.3 | 39.0 | 0.0 | 73 | 3.5 | 46.9 | 54.4 | 28.4 | 60.8 | 35.9 | | 2 | 70 | 0 | 1.0 | 23.1 | 5.3 | 41.0 | 0.0 | 73 | 3.6 | 44.3 | 50.5 | 18.8 | 58.2 | 29.6 | | 2 | 70 | 0 | 10.0 | 4.2 | 2.1 | 45.4 | 0.0 | | 2.0 | 37.0 | 48.1 | 5.8 | 56.1 | 19.2 | | 2 | 90 | 0 | 0.1 | 415.8 | 30.7 | 50.1 | 0.0 | 96 | - 1 | 48.1 | 73.7 | 32.0 | 81.3 | 38.4 | | 2 | 90 | 0 | 1.0 | 51.0 | 8.4 | 52.7 | 0.0 | | 3.5 | 46.5 | 68.3 | 22.9 | 78.4 | 32.8 | | 2 | 90 | 0 | 10.0 | 6.5 | 2.5 | 58.3 | 0.0 | 99 | - 1 | 41.5 | 63.2 | 7.7 | 75.3 | 22.6 | | 2 | 10 | 25 | 0.1 | 12.8 | 8.7 | 5.6 | 21.0 | | 9.9 | 44.0 | 63.7 | 91.3 | 45.8 | 87.8 | | 2 | 10 | 25 | 1.0 | 4.7 | 3.7 | 5.9 | 19.9 | | 9.6 | 38.8 | 60.8 | 90.4 | 43.7 | 86.6 | | 2 | 10 | 25 | 10.0 | 2.0 | 1.8 | 6.5 | 18.8 | | 0.0 | 27.9 | 59.3 | 89.1 | 42.5 | 84.8 | | 2 | 30 | 25 | 0.1 | 36.2 | 12.8 | 16.7 | 17.9 | 30 | | 45.7 | 68.2 | 75.5 | 55.7 | 70.0 | | 2 | 30 | 25 | 1.0 | 9.3 | 4.7 | 17.6 | 17.5 | | 0.2 | 41.9 | 64.8 | 72.9 | 53.3 | 67.0 | | 2 2 | 30 | 25
25 | 10.0 | 2.7 | 2.0 | 19.4
27.8 | 16.7 | 28 | - 1 | 32.5 | 62.8 | 69.1 | 51.5 | 62.3 | | 2 | 50
50 | 25
25 | 0.1
1.0 | 90.3
17.3 | 18.4
6.0 | 27.8 | 13.2
13.3 | | 2.3 | 46.9
44.0 | 72.6
68.6 | 61.7
57.3 | 65.9
63.1 | 57.8
53.7 | | 2 | 50 | 25 | 10.0 | 3.6 | 2.2 | 32.4 | 13.1 | 50 | - 1 | 36.2 | 65.8 | 50.8 | 60.8 | 46.7 | | 2 | 70 | 25 | 0.1 | 207.8 | 26.0 | 39.0 | 8.1 | | 1.4 | 47.6 | 77.0 | 49.4 | 76.1 | 48.8 | | 2 | 70 | 25 | 1.0 | 30.9 | 7.5 | 41.0 | 8.3 | 75 | - 1 | 45.5 | 72.2 | 43.3 | 73.2 | 44.0 | | 2 | 70 | 25 | 10.0 | 4.9 | 2.4 | 45.4 | 8.5 | 74 | - 1 | 39.4 | 68.2 | 33.5 | 70.4 | 35.6 | | 2 | 90 | 25 | 0.1 | 483.7 | 36.2 | 50.1 | 2.8 | 96 | - 1 | 48.3 | 81.3 | 38.4 | 86.5 | 42.1 | | 2 | 90 | 25 | 1.0 | 57.0 | 9.3 | 52.7 | 2.9 | 99 | - 1 | 46.8 | 75.8 | 30.5 | 83.5 | 36.9 | | 2 | 90 | 25 | 10.0 | 7.0 | 2.7 | 58.3 | 3.1 | 100 | - 1 | 42.1 | 70.0 | 16.8 | 80.3 | 27.4 | | 2 | 10 | 50 | 0.1 | 57.9 | 42.5 | 5.6 | 44.2 | 10 | | 47.1 | 100.0 | 95.8 | 91.7 | 93.9 | | 2 | 10 | 50 | 1.0 | 12.8 | 10.4 | 5.9 | 42.9 | 10 | | 44.5 | 100.0 | 95.4 | 88.7 | 93.4 | | 2 | 10 | 50 | 10.0 | 3.1 | 2.8 | 6.5 | 40.9 | 10 | - 1 | 37.1 | 100.0 | 94.7 | 85.4 | 92.4 | | 2 | 30 | 50 | 0.1 | 104.2 | 42.5 | 16.7 | 36.4 | 31 | - 1 | 47.4 | 100.0 | 86.3 | 91.7 | 81.8 | | 2 | 30 | 50 | 1.0 | 19.0 | 10.4 | 17.6 | 36.2 | 32 | 2.1 | 45.3 | 100.0 | 85.0 | 88.7 | 80.2 | | 2 | 30 | 50 | 10.0 | 3.8 | 2.8 | 19.4 | 35.0 | 31 | 1.7 | 38.7 | 100.0 | 82.7 | 85.4 | 77.2 | | 2 | 50 | 50 | 0.1 | 181.4 | 42.5 | 27.8 | 26.7 | 53 | 3.3 | 47.9 | 100.0 | 74.9 | 91.7 | 69.7 | | 2 | 50 | 50 | 1.0 | 28.1 | 10.4 | 29.3 | 27.1 | 54 | 1.1 | 46.0 | 100.0 | 72.4 | 88.7 | 67.0 | | 2 | 50 | 50 | 10.0 | 4.7 | 2.8 | 32.4 | 27.1 | 54 | 1.1 | 40.1 | 100.0 | 67.9 | 85.4 | 62.0 | | 2 | 70 |
50 | 0.1 | 313.0 | 42.5 | 39.0 | 16.3 | 75 | 5.1 | 48.1 | 100.0 | 61.0 | 91.7 | 57.5 | | 2 | 70 | 50 | 1.0 | 41.4 | 10.4 | 41.0 | 16.8 | 76 | - 1 | 46.5 | 94.8 | 56.8 | 88.7 | 53.8 | | 2 | 70 | 50 | 10.0 | 5.8 | 2.8 | 45.4 | 17.4 | | 7.5 | 41.5 | 89.3 | 49.2 | 85.4 | 46.9 | | 2 | 90 | 50 | 0.1 | 569.7 | 42.5 | 50.1 | 5.5 | | 7.2 | 48.4 | 89.0 | 43.7 | 91.7 | 45.4 | | 2 | 90 | 50 | 1.0 | 64.5 | 10.4 | 52.7 | 5.8 | 99 | - 1 | 47.1 | 83.3 | 36.8 | 88.7 | 40.6 | | 2 | 90 | 50 | 10.0 | 7.5 | 2.8 | 58.3 | 6.2 | 100 | - 1 | 42.8 | 77.0 | 24.3 | 85.4 | 31.7 | | 2 | 10 | 75 | 0.1 | 207.8 | 158.2 | 5.6 | 68.3 | 10 | | 48.6 | 100.0 | 97.3 | 100.0 | 96.0 | | 2 | 10 | 75 | 1.0 | 30.9 | 25.5 | 5.9 | 67.5 | 11 | - 1 | 47.5 | 100.0 | 97.1 | 100.0 | 95.7 | | 2 | 10 | 75 | 10.0 | 4.9 | 4.4 | 6.5 | 65.6 | 11 | | 43.4 | 100.0 | 96.7 | 100.0 | 95.2 | | 2 | 30 | 75 | 0.1 | 272.8 | 119.9 | 16.7 | 55.3 | | 2.5 | 48.6 | 100.0 | 90.6 | 100.0 | 87.0 | | 2 | 30 | 75 | 1.0 | 37.5 | 21.0 | 17.6 | 55.6 | | 3.4 | 47.5 | 100.0 | 89.8 | 100.0 | 86.1 | | 2 2 | 30 | 75
75 | 10.0 | 5.5 | 4.0 | 19.4 | 55.0 | 34 | | 43.4 | 100.0 | 88.3 | 100.0 | 84.1 | | 1 - | 50 | 75
75 | 0.1 | 360.0 | 90.3 | 27.8 | 40.3 | 54 | | 48.7 | 100.0 | 81.5 | 100.0 | 76.5 | | 2 2 | 50
50 | 75
75 | 1.0
10.0 | 45.9 | 17.3 | 29.3
32.4 | 41.2 | | 7.3 | 47.5 43.4 | 100.0
100.0 | 79.9
76.7 | 100.0
100.0 | 74.6 71.0 | | 2 | 70 | 75
75 | 0.1 | 6.1
483.7 | 3.6
67.3 | 32.4 | 41.8
24.6 | | 5.8 | 48.6 | 100.0 | 68.4 | 100.0 | 63.8 | | 2 | 70 | 75
75 | 1.0 | 483.7
57.0 | 14.1 | 39.0
41.0 | 25.4 | | 3.0 | 48.6
47.4 | 100.0 | 65.3 | 100.0 | 60.8 | | 2 | 70 | 75
75 | 10.0 | 7.0 | 3.3 | 45.4 | 26.5 | | 0.2 | 43.4 | 100.0 | 59.2 | 100.0 | 55.1 | | 2 | 90 | 75 | 0.1 | 689.5 | 49.7 | 50.1 | 8.3 | 97 | | 48.6 | 96.8 | 48.2 | 97.0 | 48.3 | | 2 | 90 | 75 | 1.0 | 74.6 | 11.5 | 52.7 | 8.7 | 100 | | 47.4 | 90.9 | 42.0 | 94.0 | 43.9 | | $\begin{bmatrix} \frac{2}{2} \end{bmatrix}$ | 90 | 75 | 10.0 | 8.2 | 3.0 | 58.3 | 9.3 | 100 | | 43.5 | 84.1 | 30.7 | 90.5 | 35.5 | | L = - | | ' <u>-</u> <u>-</u> | | | | | | | · · _ 1 | | | | |] | **Table 8:** Model parameters for the LP model $LP_{\Delta}(k, h_{pathway}^2, c_R, \mu)$ for disease traits. (cont.) | k | $h_{path}^2(\%)$ | $c_R(\%)$ | μ(%) | λ_{MZ} | λ_s | $h_{all}^2(\%)$ | $V_c(\%)$ | $h_{pop}^{2(ACE)}(\%)$ | $\pi_{phan}^{(ACE)}(\%)$ | $h_{pop}^{2(ADE)}(\%)$ | $\pi_{phan}^{(ADE)}(\%)$ | $h_{pop}^{2(PO)}(\%)$ | $\pi_{phan}^{(PO)}(\%)$ | |---|------------------|-----------|-------------|----------------|---------------|-----------------|-------------|------------------------|--------------------------|------------------------|--------------------------|-----------------------|-------------------------| | 3 | 10 | 0 | 0.1 | 1.8 | 1.3 | 3.9 | 0.0 | 6.2 | 36.7 | 4.0 | 0.7 | 4.7 | 16.5 | | 3 | 10 | 0 | 1.0 | 1.4 | 1.2 | 4.2 | 0.0 | 5.8 | 27.2 | 4.3 | 0.3 | 4.8 | 11.2 | | 3 | 10 | 0 | 10.0 | 1.2 | 1.1 | 4.9 | 0.0 | 5.9 | 15.6 | 4.9 | 0.1 | 5.2 | 5.9 | | 3 | 30 | 0 | 0.1 | 8.7 | 2.6 | 11.8 | 0.0 | 27.3 | 56.7 | 14.0 | 15.6 | 18.4 | 35.9 | | 3 | 30 | 0 | 1.0 | 3.6 | 1.8 | 12.7 | 0.0 | 24.9 | 49.0 | 13.6 | 6.6 | 17.4 | 26.8 | | 3 | 30 | 0 | 10.0 | 1.7 | 1.3 | 14.8 | 0.0 | 22.6 | 34.5 | 15.0 | 1.2 | 17.5 | 15.5 | | 3 | 50 | 0 | 0.1 | 36.8 | 5.8 | 19.6 | 0.0 | 51.0 | 61.5 | 28.5 | 31.2 | 36.0 | 45.5 | | 3 | 50 | 0 | 1.0 | 9.1 | 2.8 | 21.2 | 0.0 | 49.0 | 56.8 | 25.6 | 17.0 | 33.4 | 36.5 | | 3 | 50 | 0 | 10.0 | 2.6 | 1.6 | 24.7 | 0.0 | 45.1 | 45.2 | 25.6 | 3.5 | 32.1 | 23.0 | | 3 | 70
70 | 0 | 0.1
1.0 | 126.6 | 12.7 | 27.5 | 0.0 | 75.3 | 63.4
60.6 | 45.9 | 40.0
25.9 | 55.7 | 50.5 | | 3 | 70 | 0 | 10.0 | 21.3
3.9 | 4.6
1.9 | 29.7
34.6 | 0.0 | 75.3 | | 40.0
36.8 | 6.1 | 51.8
48.7 | 42.7
29.0 | | 3 | 90 | 0 | 0.1 | 402.2 | 26.2 | 35.4 | 0.0 | 72.5
100.0 | 52.3
64.6 | 64.6 | 45.1 | 76.4 | 53.7 | | 3 | 90 | 0 | 1.0 | 49.2 | 7.3 | 38.2 | 0.0 | 100.0 | 63.0 | 56.3 | 32.2 | 71.9 | 46.9 | | 3 | 90 | 0 | 10.0 | 6.3 | 2.3 | 44.4 | 0.0 | 100.0 | 57.5 | 48.5 | 8.4 | 67.2 | 33.9 | | 3 | 10 | 25 | 0.1 | 10.5 | 7.1 | 3.9 | 19.9 | 9.8 | 60.0 | 56.3 | 93.0 | 40.8 | 90.4 | | 3 | 10 | 25 | 1.0 | 4.1 | 3.2 | 4.2 | 18.2 | 9.2 | 54.0 | 52.1 | 91.9 | 37.8 | 88.8 | | 3 | 10 | 25 | 10.0 | 1.8 | 1.6 | 4.9 | 16.6 | 8.3 | 40.6 | 49.9 | 90.1 | 36.0 | 86.3 | | 3 | 30 | 25 | 0.1 | 31.1 | 10.5 | 11.8 | 18.0 | 31.1 | 62.0 | 60.4 | 80.5 | 50.6 | 76.7 | | 3 | 30 | 25 | 1.0 | 8.1 | 4.1 | 12.7 | 17.4 | 30.1 | 57.7 | 55.5 | 77.1 | 47.0 | 72.9 | | 3 | 30 | 25 | 10.0 | 2.5 | 1.8 | 14.8 | 16.0 | 27.8 | 46.7 | 52.7 | 71.9 | 44.4 | 66.6 | | 3 | 50 | 25 | 0.1 | 81.2 | 15.3 | 19.6 | 13.6 | 53.5 | 63.3 | 64.4 | 69.5 | 60.8 | 67.7 | | 3 | 50 | 25 | 1.0 | 15.6 | 5.1 | 21.2 | 13.7 | 53.2 | 60.2 | 58.4 | 63.7 | 56.7 | 62.6 | | 3 | 50 | 25 | 10.0 | 3.4 | 2.0 | 24.7 | 13.4 | 50.7 | 51.3 | 54.4 | 54.6 | 53.2 | 53.6 | | 3 | 70 | 25 | 0.1 | 194.7 | 22.0 | 27.5 | 8.5 | 76.7 | 64.1 | 68.4 | 59.7 | 71.2 | 61.3 | | 3 | 70 | 25 | 1.0 | 28.9 | 6.5 | 29.7 | 8.8 | 77.9 | 61.9 | 61.1 | 51.4 | 66.7 | 55.5 | | 3 | 70 | 25 | 10.0 | 4.7 | 2.2 | 34.6 | 9.1 | 76.9 | 55.1 | 55.2 | 37.3 | 62.4 | 44.6 | | 3 | 90 | 25 | 0.1 | 470.8 | 31.1 | 35.4 | 2.9 | 100.0 | 64.8 | 72.3 | 51.0 | 81.7 | 56.7 | | 3 | 90 | 25
25 | 1.0 | 55.4 | 8.1 | 38.2 | 3.1 | 100.0 | 63.3 | 63.7 | 40.0 | 77.1 | 50.5 | | 3 | 90 | 50 | 10.0
0.1 | 6.8
51.0 | 2.5
36.8 | 44.4
3.9 | 3.4 43.5 | 100.0
10.8 | 58.3
63.5 | 54.9
100.0 | 19.1
96.9 | 72.1
87.1 | 38.4
95.5 | | 3 | 10 | 50 | 1.0 | 11.3 | 9.1 | 4.2 | 41.3 | 10.8 | 60.8 | 100.0 | 96.4 | 82.4 | 94.9 | | 3 | 10 | 50 | 10.0 | 2.9 | 2.6 | 4.9 | 38.2 | 10.4 | 52.4 | 100.0 | 95.5 | 77.2 | 93.6 | | 3 | 30 | 50 | 0.1 | 94.3 | 36.8 | 11.8 | 37.1 | 32.7 | 63.9 | 100.0 | 89.7 | 87.1 | 86.4 | | 3 | 30 | 50 | 1.0 | 17.3 | 9.1 | 12.7 | 36.6 | 33.1 | 61.6 | 100.0 | 88.1 | 82.4 | 84.6 | | 3 | 30 | 50 | 10.0 | 3.5 | 2.6 | 14.8 | 34.7 | 32.4 | 54.2 | 99.6 | 85.1 | 77.2 | 80.8 | | 3 | 50 | 50 | 0.1 | 168.8 | 36.8 | 19.6 | 27.6 | 55.1 | 64.4 | 100.0 | 80.9 | 87.1 | 77.5 | | 3 | 50 | 50 | 1.0 | 26.1 | 9.1 | 21.2 | 28.2 | 56.3 | 62.4 | 95.5 | 77.8 | 82.4 | 74.3 | | 3 | 50 | 50 | 10.0 | 4.4 | 2.6 | 24.7 | 28.0 | 56.0 | 55.9 | 87.7 | 71.9 | 77.2 | 68.0 | | 3 | 70 | 50 | 0.1 | 298.9 | 36.8 | 27.5 | 17.0 | 78.0 | 64.7 | 91.6 | 69.9 | 87.1 | 68.4 | | 3 | 70 | 50 | 1.0 | 39.5 | 9.1 | 29.7 | 17.8 | 80.3 | 63.0 | 83.5 | 64.4 | 82.4 | 64.0 | | 3 | 70 | 50 | 10.0 | 5.5 | 2.6 | 34.6 | 18.7 | 81.4 | 57.5 | 75.1 | 54.0 | 77.2 | 55.2 | | 3 | 90 | 50 | 0.1 | 558.4 | 36.8 | 35.4 | 5.8 | 100.0 | 65.0 | 80.0 | 55.7 | 87.1 | 59.3 | | 3 | 90 | 50 | 1.0 | 63.1 | 9.1 | 38.2 | 6.2 | 100.0 | 63.6 | 71.2 | 46.4 | 82.4 | 53.7 | | 3 | 90 | 50
75 | 10.0 | 7.4 | 2.6 | 44.4 | 6.9 | 100.0 | 59.0 | 61.5
100.0 | 27.7
98.0 | 77.2
100.0 | 42.4
97.1 | | 3 | 10 | 75
75 | 0.1
1.0 | 194.7
28.9 | 146.3
23.6 | 3.9
4.2 | 68.5 67.0 | 11.3
11.8 | 65.2
64.0 | 100.0 | 98.0
97.8 | 100.0 | 96.8 | | 3 | 10 | 75
75 | 10.0 | 28.9
4.7 | 4.2 | 4.2 | 64.1 | 11.8 | 59.7 | 100.0 | 97.8 | 100.0 | 96.8 | | 3 | 30 | 75 | 0.1 | 258.8 | 109.4 | 11.8 | 56.8 | 33.9 | 65.2 | 100.0 | 93.1 | 100.0 | 90.6 | | 3 | 30 | 75 | 1.0 | 35.6 | 19.2 | 12.7 | 57.2 | 35.4 | 64.0 | 100.0 | 92.3 | 100.0 | 89.5 | | 3 | 30 | 75 | 10.0 | 5.2 | 3.7 | 14.8 | 55.9 | 36.7 | 59.7 | 100.0 | 90.4 | 100.0 | 87.2 | | 3 | 50 | 75 | 0.1 | 346.0 | 81.2 | 19.6 | 41.9 | 56.5 | 65.3 | 100.0 | 86.3 | 100.0 | 82.8 | | 3 | 50 | 75 | 1.0 | 44.0 | 15.6 | 21.2 | 43.2 | 58.9 | 64.0 | 100.0 | 84.3 | 100.0 | 80.7 | | 3 | 50 | 75 | 10.0 | 5.9 | 3.4 | 24.7 | 44.0 | 61.3 | 59.7 | 100.0 | 80.3 | 100.0 | 76.2 | | 3 | 70 | 75 | 0.1 | 470.8 | 59.7 | 27.5 | 25.7 | 79.1 | 65.2 | 100.0 | 76.1 | 100.0 | 73.3 | | 3 | 70 | 75 | 1.0 | 55.4 | 12.6 | 29.7 | 27.0 | 82.4 | 64.0 | 100.0 | 72.2 | 98.7 | 69.9 | | 3 | 70 | 75 | 10.0 | 6.8 | 3.0 | 34.6 | 28.8 | 85.8 | 59.7 | 96.4 | 64.1 | 92.9 | 62.8 | | 3 | 90 | 75 | 0.1 | 680.8 | 43.4 | 35.4 | 8.8 | 100.0 | 65.2 | 87.8 | 59.7 | 92.5 | 61.7 | | 3 | 90 | 75 | 1.0 | 73.6 | 10.2 | 38.2 | 9.4 | 100.0 | 63.9 | 78.8 | 51.5 | 87.8 | 56.5 | | 3 | 1 90_ | 75_ | _ 10.0 _ | _ 8.1 | 2.7_ | 44.4 _ | _ 10.4 _ | 100.0 | 59.8 | 68.2 | 34.9 _ | 82.3 _ | 46.0 | **Table 8:** Model parameters for the LP model $LP_{\Delta}(k, h_{pathway}^2, c_R, \mu)$ for disease traits. (cont.) | k | $h_{path}^2(\%)$ | $c_R(\%)$ | μ(%) | λ_{MZ} | λ_s | $h_{all}^2(\%)$ | $V_c(\%)$ | $h_{pop}^{2(ACE)}(\%)$ | $\pi_{phan}^{(ACE)}(\%)$ | $h_{pop}^{2(ADE)}(\%)$ | $\pi_{phan}^{(ADE)}(\%)$ | $h_{pop}^{2(PO)}(\%)$ | $\pi_{phan}^{(PO)}(\%)$ | |-------------------------------|------------------|-------------|-------------|----------------|-------------|-----------------|-------------|------------------------|--------------------------|------------------------|--------------------------|-----------------------|-------------------------| | 4 | 10 | 0 | 0.1 | 1.6 | 1.2 | 3.1 | 0.0 | 5.4 | 42.6 | 3.0 | 0.0 | 3.8 | 19.4 | | 4 | 10 | 0 | 1.0 | 1.4 | 1.1 | 3.4 | 0.0 | 5.0 | 32.2 | 3.4 | 0.0 | 3.9 | 13.4 | | 4 | 10 | 0 | 10.0 | 1.1 | 1.1 | 4.0 | 0.0 | 5.0 | 19.2 | 4.0 | 0.0 | 4.4 | 7.3 | | 4 | 30 | 0 | 0.1 | 7.6 | 2.3 | 9.2 | 0.0 | 26.3 | 65.0 | 10.8 | 14.5 | 16.0 | 42.2 | | 4 | 30 | 0 | 1.0 | 3.2 | 1.6 | 10.1 | 0.0 | 23.4 | 56.9 | 10.6 | 4.5 | 14.9 | 32.1 | | 4 | 30 | 0 | 10.0 | 1.6 | 1.2 | 12.1 | 0.0 | 20.7 | 41.4 | 12.2 | 0.2 | 15.0 | 19.2 | | 4 | 50 | 0 | 0.1 | 33.3 | 5.1 | 15.3 | 0.0 | 51.1 | 70.0 | 23.6 | 35.1 | 32.8 | 53.3 | | 4 | 50 | 0 | 1.0 | 8.3 | 2.6 | 16.8 | 0.0 | 48.4 | 65.3 | 20.3 | 17.4 | 29.7 | 43.4 | | 4 | 50 | 0 | 10.0 | 2.4 | 1.5 | 20.2 | 0.0 | 43.4 | 53.4 | 20.6 | 1.8 | 28.2 | 28.3 | | 4 | 70 | 0 | 0.1 | 119.2 | 11.2 | 21.5 | 0.0 | 76.5 | 71.9 | 40.1 | 46.4 | 52.2 | 58.8 | | 4 | 70 | 0 | 1.0 | 20.1 | 4.1 | 23.5 | 0.0 | 76.2 | 69.1 | 33.1 | 29.0 | 47.5 | 50.4 | | 4 | 70
90 | 0 | 10.0
0.1 | 3.8 | 1.8 | 28.3 | 0.0 | 72.4
100.0 |
60.9
73.1 | 29.5 | 4.2
52.6 | 43.8
73.1 | 35.4
62.2 | | 4 | 90 | 0 | 1.0 | 392.8
48.0 | 23.5
6.6 | 27.6
30.3 | 0.0 | 100.0 | 71.5 | 58.3
48.2 | 37.1 | 67.5 | 55.1 | | 4 | 90 | 0 | 10.0 | 6.2 | 2.2 | 36.4 | 0.0 | 100.0 | 66.2 | 38.8 | 6.1 | 61.8 | 41.1 | | 4 | 10 | 25 | 0.1 | 9.2 | 6.2 | 3.1 | 19.0 | 9.7 | 68.5 | 51.3 | 94.0 | 37.4 | 91.8 | | 4 | 10 | 25 | 1.0 | 3.6 | 2.9 | 3.4 | 17.0 | 8.9 | 62.3 | 46.4 | 92.8 | 33.9 | 90.1 | | 4 | 10 | 25 | 10.0 | 1.7 | 1.6 | 4.0 | 15.2 | 7.8 | 48.3 | 43.9 | 90.8 | 31.9 | 87.3 | | 4 | 30 | 25 | 0.1 | 28.0 | 9.2 | 9.2 | 18.1 | 31.2 | 70.5 | 55.1 | 83.3 | 47.2 | 80.5 | | 4 | 30 | 25 | 1.0 | 7.4 | 3.6 | 10.1 | 17.2 | 29.9 | 66.3 | 49.3 | 79.5 | 42.8 | 76.4 | | 4 | 30 | 25 | 10.0 | 2.3 | 1.7 | 12.1 | 15.5 | 26.9 | 54.9 | 46.1 | 73.7 | 39.7 | 69.4 | | 4 | 50 | 25 | 0.1 | 75.3 | 13.5 | 15.3 | 13.9 | 54.3 | 71.8 | 58.8 | 74.0 | 57.3 | 73.3 | | 4 | 50 | 25 | 1.0 | 14.5 | 4.6 | 16.8 | 14.0 | 53.8 | 68.7 | 51.6 | 67.4 | 52.3 | 67.9 | | 4 | 50 | 25 | 10.0 | 3.2 | 1.9 | 20.2 | 13.5 | 50.4 | 59.9 | 47.0 | 56.9 | 48.1 | 58.0 | | 4 | 70 | 25 | 0.1 | 185.9 | 19.6 | 21.5 | 8.7 | 78.3 | 72.5 | 62.5 | 65.6 | 67.7 | 68.3 | | 4 | 70 | 25 | 1.0 | 27.6 | 5.9 | 23.5 | 9.1 | 79.7 | 70.4 | 53.6 | 56.1 | 62.3 | 62.2 | | 4 | 70 | 25 | 10.0 | 4.5 | 2.1 | 28.3 | 9.5 | 78.1 | 63.8 | 46.6 | 39.2 | 57.1 | 50.4 | | 4 | 90 | 25 | 0.1 | 462.0 | 28.0 | 27.6 | 3.0 | 100.0 | 73.2 | 66.0 | 58.1 | 78.4 | 64.8 | | 4 | 90 | 25 | 1.0 | 54.3 | 7.4 | 30.3 | 3.3 | 100.0 | 71.8 | 55.4 | 45.4 | 72.7 | 58.4 | | 4 | 90 | 25 | 10.0 | 6.7 | 2.3 | 36.4 | 3.7 | 100.0 | 67.0 | 44.8 | 18.7 | 66.6 | 45.4 | | 4 | 10 | 50 | 0.1 | 46.6 | 33.3 | 3.1 | 42.8 | 11.0 | 72.0 | 100.0 | 97.4 | 83.8 | 96.3 | | 4 | 10 | 50 | 1.0 | 10.4 | 8.3 | 3.4 | 40.1 | 11.0 | 69.3 | 100.0 | 97.0 | 78.1 | 95.7 | | 4 | 10 | 50 | 10.0 | 2.7 | 2.4 | 4.0 | 36.3 | 10.4 | 61.0 | 100.0 | 96.0 | 71.6 | 94.4 | | 4 | 30 | 50 | 0.1 | 88.0 | 33.3 | 9.2 | 37.5 | 33.4 | 72.4 | 100.0 | 91.6 | 83.8 | 89.0 | | 4 | 30 | 50 | 1.0 | 16.2 | 8.3 | 10.1 | 36.8 | 33.8 | 70.2 | 100.0 | 89.9 | 78.1 | 87.1 | | 4 | 30 | 50 | 10.0 | 3.4 | 2.4 | 12.1 | 34.3 | 32.7 | 62.9 | 91.1 | 86.7 | 71.6 | 83.1 | | 4 | 50 | 50 | 0.1 | 160.5 | 33.3 | 15.3 | 28.2 | 56.4 | 72.8 | 97.6 | 84.3 | 83.8 | 81.7 | | 4 | 50
50 | 50
50 | 1.0
10.0 | 24.8
4.2 | 8.3
2.4 | 16.8
20.2 | 28.9 28.6 | 57.8
57.2 | 70.9
64.6 | 88.3
78.8 | 81.0
74.4 | 78.1
71.6 | 78.5
71.8 | | 4 | 70 | 50 | 0.1 | 289.3 | 33.3 | 21.5 | 17.5 | 79.9 | 73.1 | 85.8 | 74.4 | 83.8 | 74.4 | | 4 | 70 | 50 | 1.0 | 38.2 | 8.3 | 23.5 | 18.5 | 82.7 | 71.5 | 75.8 | 68.9 | 78.1 | 69.8 | | 4 | 70 | 50 | 10.0 | 5.4 | 2.4 | 28.3 | 19.6 | 83.8 | 66.2 | 65.5 | 56.8 | 71.6 | 60.5 | | 4 | 90 | 50 | 0.1 | 550.5 | 33.3 | 27.6 | 6.0 | 100.0 | 73.4 | 73.8 | 62.5 | 83.8 | 67.0 | | 4 | 90 | 50 | 1.0 | 62.2 | 8.3 | 30.3 | 6.5 | 100.0 | 72.1 | 62.9 | 51.8 | 78.1 | 61.2 | | 4 | 90 | 50 | 10.0 | 7.2 | 2.4 | 36.4 | 7.4 | 100.0 | 67.7 | 51.0 | 28.6 | 71.6 | 49.2 | | 4 | 10 | 75 | 0.1 | 185.9 | 138.4 | 3.1 | 68.4 | 11.6 | 73.6 | 100.0 | 98.4 | 100.0 | 97.7 | | 4 | 10 | 75 | 1.0 | 27.6 | 22.3 | 3.4 | 66.6 | 12.2 | 72.5 | 100.0 | 98.2 | 100.0 | 97.4 | | 4 | 10 | 75 | 10.0 | 4.5 | 4.0 | 4.0 | 62.9 | 12.8 | 68.3 | 100.0 | 97.7 | 100.0 | 96.7 | | 4 | 30 | 75 | 0.1 | 249.4 | 102.5 | 9.2 | 57.8 | 34.9 | 73.6 | 100.0 | 94.5 | 100.0 | 92.5 | | 4 | 30 | 75 | 1.0 | 34.2 | 18.0 | 10.1 | 58.1 | 36.7 | 72.5 | 100.0 | 93.6 | 100.0 | 91.4 | | 4 | 30 | 75 | 10.0 | 5.1 | 3.6 | 12.1 | 56.4 | 38.3 | 68.3 | 100.0 | 91.7 | 100.0 | 89.0 | | 4 | 50 | 75 | 0.1 | 336.4 | 75.3 | 15.3 | 42.9 | 58.1 | 73.7 | 100.0 | 88.9 | 100.0 | 86.3 | | 4 | 50 | 75 | 1.0 | 42.8 | 14.5 | 16.8 | 44.5 | 61.1 | 72.5 | 100.0 | 86.9 | 100.0 | 84.2 | | 4 | 50 | 75 | 10.0 | 5.8 | 3.2 | 20.2 | 45.4 | 63.9 | 68.4 | 100.0 | 82.5 | 98.5 | 79.5 | | 4 | 70 | 75 | 0.1 | 462.0 | 54.8 | 21.5 | 26.5 | 81.4 | 73.6 | 100.0 | 80.4 | 100.0 | 78.6 | | 4 | 70 | 75 | 1.0 | 54.3 | 11.7 | 23.5 | 28.2 | 85.5 | 72.4 | 99.3 | 76.3 | 94.7 | 75.1 | | 4 | 70 | 75 | 10.0 | 6.7 | 2.9 | 28.3 | 30.3 | 89.6 | 68.4 | 86.2 | 67.2 | 87.3 | 67.6 | | 4 | 90 | 75 | 0.1 | 674.8 | 39.4 | 27.6 | 9.1 | 100.0 | 73.6 | 81.7 | 66.2 | 89.3 | 69.1 | | 4 | 90 | 75 | 1.0 | 72.8 | 9.3 | 30.3 | 9.8 | 100.0 | 72.4 | 70.4 | 57.0 | 83.5 | 63.8 | | $\lfloor \frac{4}{-} \rfloor$ | 90_ | $^{75}_{-}$ | _ 10.0 _ | _ 8.0 | 2.6_ | 36.4 _ | _ 11.2 _ | | 68.5 _ | 57.4 | 36.6 _ | | 52.6 | **Table 8:** Model parameters for the LP model $LP_{\Delta}(k, h_{pathway}^2, c_R, \mu)$ for disease traits. (cont.) | k | $h_{path}^2(\%)$ | $c_R(\%)$ | μ(%) | l \ | l , | $h_{all}^2(\%)$ | $V_c(\%)$ | $h_{pop}^{2(ACE)}(\%)$ | $\pi_{phan}^{(ACE)}(\%)$ | $h_{pop}^{2(ADE)}(\%)$ | $\pi_{nhan}^{(ADE)}(\%)$ | $h_{pop}^{2(PO)}(\%)$ | $\pi^{(PO)}_{phan}(\%)$ | |--------|---------------------|-----------|-----------------------|--------------------|-------------------------|---------------------|-----------------------|------------------------|---------------------------------------|------------------------|------------------------------|-----------------------|-------------------------| | 5 | $n_{path}(70)$ 10 | 0 | $\frac{\mu(70)}{0.1}$ | λ_{MZ} 1.5 | $\frac{\lambda_s}{1.2}$ | $n_{all}(76)$ 2.5 | $\frac{v_c(70)}{0.0}$ | n_{pop} (76) | $\frac{\pi_{phan}^{(ACE)}(\%)}{46.5}$ | n_{pop} (76) | $\pi_{phan}^{(1)}(\%)$ 0.0 | 3.2 | 7 phan (70)
21.4 | | 5 | 10 | 0 | 1.0 | 1.3 | 1.1 | 2.8 | 0.0 | 4.4 | 35.6 | 2.8 | 0.0 | 3.3 | 15.0 | | 5 | 10 | 0 | 10.0 | 1.1 | 1.1 | 3.5 | 0.0 | 4.4 | 21.8 | 3.4 | 0.0 | 3.8 | 8.4 | | 5 | 30 | 0 | 0.1 | 6.8 | 2.1 | 7.6 | 0.0 | 25.5 | 70.2 | 8.6 | 11.3 | 14.2 | 46.5 | | 5 | 30 | 0 | 1.0 | 3.0 | 1.6 | 8.4 | 0.0 | 22.2 | 62.1 | 8.5 | 1.3 | 13.1 | 35.7 | | 5 | 30 | 0 | 10.0 | 1.6 | 1.2 | 10.4 | 0.0 | 19.3 | 46.3 | 10.2 | 0.0 | 13.3 | 21.9 | | 5 | 50 | 0 | 0.1 | 30.8 | 4.6 | 12.6 | 0.0 | 51.0 | 75.3 | 20.0 | 36.9 | 30.3 | 58.4 | | 5 | 50 | 0 | 1.0 | 7.8 | 2.4 | 14.0 | 0.0 | 47.8 | 70.7 | 16.6 | 15.8 | 27.0 | 48.1 | | 5 | 50 | 0 | 10.0 | 2.3 | 1.4 | 17.3 | 0.0 | 42.0 | 58.9 | 17.1 | 0.0 | 25.4 | 32.2 | | 5 | 70 | 0 | 0.1 | 113.8 | 10.1 | 17.7 | 0.0 | 77.3 | 77.1 | 35.7 | 50.4 | 49.6 | 64.3 | | 5 | 70 | 0 | 1.0 | 19.2 | 3.8 | 19.6 | 0.0 | 76.9 | 74.5 | 28.1 | 30.1 | 44.3 | 55.7 | | 5 | 70 | 0 | 10.0 | 3.6 | 1.7 | 24.2 | 0.0 | 72.2 | 66.5 | 24.3 | 0.7 | 40.3 | 40.0 | | 5 | 90 | 0 | 0.1 | 385.8 | 21.5 | 22.8 | 0.0 | 100.0 | 78.2 | 53.5 | 57.4 | 70.5 | 67.7 | | 5 | 90 | 0 | 1.0 | 47.1 | 6.1 | 25.2 | 0.0 | 100.0 | 76.7 | 42.0 | 40.0 | 64.2 | 60.7 | | 5 | 90 | 0 | 10.0 | 6.1 | 2.1 | 31.1 | 0.0 | 100.0 | 71.8 | 31.6 | 1.7 | 57.8 | 46.2 | | 5 | 10 | 25 | 0.1 | 8.3 | 5.6 | 2.5 | 18.3 | 9.6 | 73.7 | 47.6 | 94.7 | 34.9 | 92.8 | | 5 | 10 | 25 | 1.0 | 3.4 | 2.7 | 2.8 | 16.0 | 8.7 | 67.7 | 42.3 | 93.4 | 31.1 | 91.0 | | 5 | 10 | 25 | 10.0 | 1.6 | 1.5 | 3.5 | 14.1 | 7.4 | 53.5 | 39.6 | 91.3 | 28.9 | 88.1 | | 5
5 | 30 | 25 | 0.1 | 25.8 | 8.3 | 7.6 | 18.1 | 31.3 | 75.8 | 51.2 | 85.2
81.2 | 44.6 | 83.0 | | | 30
30 | 25
25 | 1.0
10.0 | 6.9
2.2 | 3.4
1.6 | 8.4
10.4 | 17.1 | 29.7
26.2 | 71.7 | 44.8 | | 39.7 | 78.8 | | 5 | 50 | 25 | 0.1 | 71.1 | 12.3 | 12.6 | 15.0 14.1 | 54.8 | 60.5
77.0 | 41.4
54.6 | 75.0
76.9 | 36.3
54.7 | 71.5
76.9 | | 5 | 50 | 25 | 1.0 | 13.8 | 4.3 | 14.0 | 14.1 | 54.1 | 74.1 | 46.6 | 69.9 | 49.1 | 71.4 | | 5 | 50 | 25 | 10.0 | 3.1 | 1.8 | 17.3 | 13.5 | 50.0 | 65.5 | 41.6 | 58.5 | 44.4 | 61.2 | | 5 | 70 | 25 | 0.1 | 179.4 | 17.9 | 17.7 | 8.9 | 79.5 | 77.7 | 58.0 | 69.5 | 65.2 | 72.8 | | 5 | 70 | 25 | 1.0 | 26.7 | 5.4 | 19.6 | 9.4 | 80.9 | 75.7 | 48.1 | 59.1 | 59.0 | 66.7 | | 5 | 70 | 25 | 10.0 | 4.4 | 2.0 | 24.2 | 9.8 | 78.8 | 69.4 | 40.3 | 40.0 | 53.1 | 54.5 | | 5 | 90 | 25 | 0.1 | 455.3 | 25.8 | 22.8 | 3.1 | 100.0 | 78.4 | 61.2 | 62.8 | 75.9 | 70.0 | | 5 | 90 | 25 | 1.0 | 53.5 | 6.9 | 25.2 | 3.4 | 100.0 | 77.0 | 49.2 | 48.7 | 69.4 | 63.6 | | 5 | 90 | 25 | 10.0 | 6.6 | 2.2 | 31.1 | 3.9 | 100.0 | 72.5 | 37.3 | 16.7 | 62.5 | 50.3 | | 5 | 10 | 50 | 0.1 | 43.4 | 30.8 | 2.5 | 42.3 | 11.1 | 77.2 | 100.0 | 97.8 | 81.4 | 96.9 | | 5 | 10 | 50 | 1.0 | 9.8 | 7.8 | 2.8 | 39.1 | 11.1 | 74.7 | 100.0 | 97.4 | 74.8 | 96.3 | | 5 | 10 | 50 | 10.0 | 2.6 | 2.3 | 3.5 | 34.8 | 10.3 | 66.6 | 96.0 | 96.4 | 67.4 | 94.9 | | 5 | 30 | 50 | 0.1 | 83.3 | 30.8 | 7.6 | 37.8 | 33.9 | 77.6 | 100.0 | 92.8 | 81.4 | 90.7 | | 5 | 30 | 50 | 1.0 | 15.4 | 7.8 | 8.4 | 36.9 | 34.3 | 75.5 | 95.1 | 91.2 | 74.8 | 88.8 | | 5 | 30 | 50 | 10.0 | 3.2 | 2.3 | 10.4 | 33.9 | 32.8 | 68.5 | 84.7 | 87.8 | 67.4 | 84.7 | | 5 | 50 | 50 | 0.1 | 154.3 | 30.8 | 12.6 | 28.6 | 57.3 | 78.0 | 93.4 | 86.5 | 81.4 | 84.5 | | 5
5 | 50
50 | 50
50 | 1.0
10.0 | 23.9
4.1 | 7.8
2.3 | 14.0
17.3 | 29.4 28.9 | 58.8
57.9 | 76.2
70.2 | 82.8
72.2 | 83.1
76.1 | 74.8
67.4 | 81.3
74.4 | | 5 | 70 | 50 | 0.1 | 282.2 | 30.8 | 17.7 | 17.9 | 81.4 | 78.2 | 81.4 | 78.2 | 81.4 | 78.2 | | 5 | 70 | 50 | 1.0 | 37.2 | 7.8 | 19.6 | 19.1 | 84.5 | 76.8 | 70.0 | 71.9 | 74.8 | 73.8 | | 5 | 70 | 50 | 10.0 | 5.3 | 2.3 | 24.2 | 20.2 | 85.5 | 71.8 | 58.4 | 58.6 | 67.4 | 64.2 | | 5 | 90 | 50 | 0.1 | 544.6 | 30.8 | 22.8 | 6.2 | 100.0 | 78.5 | 69.0 | 67.0 | 81.4 | 72.0 | | 5 | 90 | 50 | 1.0 | 61.4 | 7.8 | 25.2 | 6.8 | 100.0 | 77.3 | 56.6 | 55.4 | 74.8 | 66.3 | | 5 | 90 | 50 | 10.0 | 7.2 | 2.3 | 31.1 | 7.8 | 100.0 | 73.2 | 43.2 | 28.0 | 67.4 | 54.0 | | 5 | 10 | 75 | 0.1 | 179.4 | 132.6 | 2.5 | 68.3 | 11.9 | 78.7 | 100.0 | 98.7 | 100.0 | 98.1 | | 5 | 10 | 75 | 1.0 | 26.7 | 21.4 | 2.8 | 66.1 | 12.6 | 77.7 | 100.0 | 98.5 | 100.0 | 97.8 | | 5 | 10 | 75 | 10.0 | 4.4 | 3.9 | 3.5 | 61.9 | 13.2 | 73.8 | 100.0 | 98.0 | 100.0 | 97.1 | | 5 | 30 | 75 | 0.1 | 242.4 | 97.5 | 7.6 | 58.5 | 35.6 | 78.7 | 100.0 | 95.4 | 100.0 | 93.7 | | 5 | 30 | 75 | 1.0 | 33.3 | 17.2 | 8.4 | 58.7 | 37.7 | 77.7 | 100.0 | 94.5 | 100.0 | 92.7 | | 5 | 30 | 75 | 10.0 | 4.9 | 3.4 | 10.4 | 56.6 | 39.5 | 73.8 | 100.0 | 92.6 | 100.0 | 90.3 | | 5 | 50 | 75 | 0.1 | 329.3 |
71.1 | 12.6 | 43.7 | 59.4 | 78.8 | 100.0 | 90.6 | 100.0 | 88.5 | | 5 | 50 | 75 | 1.0 | 41.8 | 13.8 | 14.0 | 45.5 | 62.7 | 77.7 | 100.0 | 88.6 | 100.0 | 86.4 | | 5 | 50 | 75
75 | 10.0 | 5.6 | 3.1 | 17.3 | 46.4 | 65.9 | 73.8 | 100.0 | 84.1 | 94.4 | 81.7 | | 5 | 70
70 | 75
75 | 0.1 | 455.3 | 51.3 | 17.7 | 27.2 | 83.1 | 78.7 | 100.0 | 83.2 | 98.1 | 81.9 | | 5
5 | 70 | 75
75 | 1.0
10.0 | 53.5
6.6 | 11.0
2.8 | 19.6
24.2 | 29.1
31.5 | 87.8
92.4 | 77.6
73.9 | 93.5
78.6 | 79.0
69.2 | 91.6
83.2 | 78.6
71.0 | | 5 | 90 | 75 | 0.1 | 670.2 | 36.6 | 22.8 | 9.3 | 100.0 | 78.7 | 77.0 | 70.4 | 86.9 | 73.8 | | 5 | 90 | 75 | 1.0 | 72.3 | 8.7 | 25.2 | 10.2 | 100.0 | 77.6 | 64.1 | 60.6 | 80.3 | 68.6 | | 5 | 90 | 75 | 10.0 | 8.0 | 2.5 | 31.1 | 11.9 | 100.0 | 73.9 | 49.3 | 36.9 | 72.5 | 57.2 | | L i | <u> </u> | ' '- | · · - · | | · - | | | | | | | | | **Table 8:** Model parameters for the LP model $LP_{\Delta}(k, h_{pathway}^2, c_R, \mu)$ for disease traits. (cont.) | k | $h_{path}^2(\%)$ | $c_R(\%)$ | μ(%) | λ_{MZ} | λ_s | $h_{all}^2(\%)$ | $V_c(\%)$ | $h_{pop}^{2(ACE)}(\%)$ | $\pi_{phan}^{(ACE)}(\%)$ | $h_{pop}^{2(ADE)}(\%)$ | $\pi_{phan}^{(ADE)}(\%)$ | $h_{pop}^{2(PO)}(\%)$ | $\pi^{(PO)}_{phan}(\%)$ | |---|------------------|-----------|------------|----------------|-------------|-----------------|--------------|------------------------|--------------------------|------------------------|--------------------------|-----------------------|-------------------------| | 6 | 10 | 0 | 0.1 | 1.5 | 1.2 | 2.2 | 0.0 | 4.3 | 49.4 | 2.1 | 0.0 | 2.8 | 22.9 | | 6 | 10 | 0 | 1.0 | 1.3 | 1.1 | 2.4 | 0.0 | 3.9 | 38.1 | 2.4 | 0.0 | 2.9 | 16.2 | | 6 | 10 | 0 | 10.0 | 1.1 | 1.1 | 3.0 | 0.0 | 4.0 | 23.9 | 3.0 | 0.0 | 3.3 | 9.2 | | 6 | 30 | 0 | 0.1 | 6.2 | 2.0 | 6.5 | 0.0 | 24.8 | 73.9 | 6.9 | 6.6 | 12.9 | 49.7 | | 6 | 30 | 0 | 1.0 | 2.8 | 1.5 | 7.2 | 0.0 | 21.2 | 65.9 | 7.1 | 0.0 | 11.8 | 38.5 | | 6 | 30 | 0 | 10.0 | 1.5 | 1.2 | 9.1 | 0.0 | 18.1 | 49.9 | 8.9 | 0.0 | 11.9 | 24.1 | | 6 | 50 | 0 | 0.1 | 28.9 | 4.2 | 10.8 | 0.0 | 50.9 | 78.9 | 17.2 | 37.5 | 28.5 | 62.2 | | 6 | 50 | 0 | 1.0 | 7.3 | 2.2 | 12.1 | 0.0 | 47.2 | 74.4 | 13.8 | 12.9 | 25.0 | 51.7 | | 6 | 50 | 0 | 10.0 | 2.3 | 1.4 | 15.1 | 0.0 | 40.8 | 63.0 | 14.6 | 0.0 | 23.3 | 35.2 | | 6 | 70 | 0 | 0.1 | 109.5 | 9.3 | 15.1 | 0.0 | 77.9 | 80.6 | 32.3 | 53.1 | 47.5 | 68.2 | | 6 | 70 | 0 | 1.0 | 18.5 | 3.6 | 16.9 | 0.0 | 77.3 | 78.1 | 24.1 | 29.9 | 41.9 | 59.6 | | 6 | 70 | 0 | 10.0 | 3.5 | 1.7 | 21.2 | 0.0 | 71.9 | 70.6 | 20.3 | 0.0 | 37.5 | 43.6 | | 6 | 90 | 0 | 0.1 | 380.2 | 20.1 | 19.4 | 0.0 | 100.0 | 81.7 | 49.7 | 60.9 | 68.4 | 71.6 | | 6 | 90 | 0 | 1.0 | 46.4 | 5.8 | 21.7 | 0.0 | 100.0 | 80.3 | 37.2 | 41.6 | 61.5 | 64.7 | | 6 | 90 | 0
25 | 10.0 | 6.0 | 2.0 | 27.2 | 0.0 | 100.0
9.5 | 75.7 | 26.0 | 0.0
95.2 | 54.6 | 50.1
93.4 | | 6 | 10 | 25
25 | 0.1
1.0 | 7.6
3.2 | 5.1
2.5 | 2.2
2.4 | 17.7 15.3 | 9.5
8.5 | 77.4
71.4 | 44.7
39.1 | 93.8 | 33.0
28.9 | 91.6 | | 6 | 10 | 25 | 10.0 | 1.6 | 1.5 | 3.0 | 13.2 | 7.1 | 57.4 | 36.4 | 91.7 | 26.6 | 88.6 | | 6 | 30 | 25 | 0.1 | 24.1 | 7.6 | 6.5 | 18.1 | 31.4 | 79.4 | 48.1 | 86.5 | 42.5 | 84.8 | | 6 | 30 | 25 | 1.0 | 6.5 | 3.2 | 7.2 | 16.9 | 29.5 | 75.4 | 41.3 | 82.4 | 37.3 | 80.6 | | 6 | 30 | 25 | 10.0 | 2.1 | 1.6 | 9.1 | 14.6 | 25.6 | 64.5 | 37.8 | 76.0 | 33.7 | 73.1 | | 6 | 50 | 25 | 0.1 | 67.8 | 11.3 | 10.8 | 14.2 | 55.2 | 80.5 | 51.3 | 79.0 | 52.6 | 79.5 | | 6 | 50 | 25 | 1.0 | 13.1 | 4.0 | 12.1 | 14.3 | 54.3 | 77.8 | 42.7 | 71.7 | 46.5 | 74.1 | | 6 | 50 | 25 | 10.0 | 3.0 | 1.8 | 15.1 | 13.5 | 49.6 | 69.5 | 37.5 | 59.7 | 41.5 | 63.6 | | 6 | 70 | 25 | 0.1 | 174.3 | 16.6 | 15.1 | 9.0 | 80.4 | 81.2 | 54.4 | 72.2 | 63.1 | 76.0 | | 6 | 70 | 25 | 1.0 | 25.9 | 5.1 | 16.9 | 9.6 | 81.9 | 79.4 | 43.7 | 61.3 | 56.4 | 70.0 | | 6 | 70 | 25 | 10.0 | 4.2 | 1.9 | 21.2 | 10.0 | 79.3 | 73.3 | 35.4 | 40.2 | 50.1 | 57.7 | | 6 | 90 | 25 | 0.1 | 450.0 | 24.1 | 19.4 | 3.2 | 100.0 | 81.8 | 57.4 | 66.1 | 73.9 | 73.7 | | 6 | 90 | 25 | 1.0 | 52.8 | 6.5 | 21.7 | 3.5 | 100.0 | 80.6 | 44.3 | 50.9 | 66.8 | 67.5 | | 6 | 90 | 25 | 10.0 | 6.5 | 2.1 | 27.2 | 4.0 | 100.0 | 76.4 | 31.4 | 13.2 | 59.3 | 54.1 | | 6 | 10 | 50 | 0.1 | 41.0 | 28.9 | 2.2 | 41.8 | 11.2 | 80.7 | 100.0 | 98.1 | 79.4 | 97.3 | | 6 | 10 | 50 | 1.0 | 9.3 | 7.3 | 2.4 | 38.3 | 11.1 | 78.3 | 100.0 | 97.6 | 72.2 | 96.7 | | 6 | 10 | 50 | 10.0 | 2.5 | 2.3 | 3.0 | 33.6 | 10.3 | 70.6 | 91.1 | 96.7 | 64.2 | 95.3 | | 6 | 30 | 50 | 0.1 | 79.7 | 28.9 | 6.5 | 38.0 | 34.2 | 81.1 | 100.0 | 93.6 | 79.4 | 91.8 | | 6 | 30 | 50 | 1.0 | 14.7 | 7.3 | 7.2 | 36.9 | 34.6 | 79.1 | 91.0 | 92.0 | 72.2 | 90.0 | | 6 | 30 | 50 | 10.0 | 3.2 | 2.3 | 9.1 | 33.5 | 32.9 | 72.4 | 79.8 | 88.6 | 64.2 | 85.9 | | 6 | 50 | 50 | 0.1 | 149.5 | 28.9 | 10.8 | 29.0 | 58.0 | 81.5 | 90.1 | 88.1 | 79.4 | 86.4 | | 6 | 50 | 50 | 1.0 | 23.1 | 7.3 | 12.1 | 29.8 | 59.6 | 79.8 | 78.5 | 84.6 | 72.2 | 83.3 | | 6 | 50 | 50 | 10.0 | 4.0 | 2.3 | 15.1 | 29.2 | 58.4 | 74.1 | 67.0 | 77.4 | 64.2 | 76.4 | | 6 | 70
70 | 50
50 | 0.1
1.0 | 276.5
36.5 | 28.9
7.3 | 15.1
16.9 | 18.2
19.5 | 82.5
85.9 | 81.7
80.3 | 77.8
65.4 | 80.6
74.1 | 79.4 72.2 | 81.0
76.6 | | 6 | 70 | 50 | 10.0 | 5.2 | 2.3 | 21.2 | 20.8 | 86.8 | 75.6 | 52.8 | 59.9 | 64.2 | 67.0 | | 6 | 90 | 50 | 0.1 | 539.8 | 28.9 | 19.4 | 6.3 | 100.0 | 82.0 | 65.2 | 70.2 | 79.4 | 75.5 | | 6 | 90 | 50 | 1.0 | 60.9 | 7.3 | 21.7 | 7.0 | 100.0 | 80.9 | 51.6 | 57.8 | 72.2 | 69.9 | | 6 | 90 | 50 | 10.0 | 7.1 | 2.3 | 27.2 | 8.1 | 100.0 | 77.0 | 37.0 | 26.4 | 64.2 | 57.6 | | 6 | 10 | 75 | 0.1 | 174.3 | 128.0 | 2.2 | 68.2 | 12.1 | 82.1 | 100.0 | 98.9 | 100.0 | 98.4 | | 6 | 10 | 75 | 1.0 | 25.9 | 20.7 | 2.4 | 65.7 | 12.8 | 81.2 | 100.0 | 98.7 | 100.0 | 98.1 | | 6 | 10 | 75 | 10.0 | 4.2 | 3.8 | 3.0 | 61.0 | 13.5 | 77.5 | 100.0 | 98.2 | 100.0 | 97.4 | | 6 | 30 | 75 | 0.1 | 236.9 | 93.6 | 6.5 | 59.0 | 36.2 | 82.1 | 100.0 | 96.0 | 100.0 | 94.6 | | 6 | 30 | 75 | 1.0 | 32.5 | 16.5 | 7.2 | 59.2 | 38.5 | 81.2 | 100.0 | 95.2 | 100.0 | 93.6 | | 6 | 30 | 75 | 10.0 | 4.8 | 3.3 | 9.1 | 56.8 | 40.4 | 77.5 | 100.0 | 93.3 | 100.0 | 91.2 | | 6 | 50 | 75 | 0.1 | 323.5 | 67.8 | 10.8 | 44.4 | 60.4 | 82.2 | 100.0 | 91.8 | 100.0 | 90.0 | | 6 | 50 | 75 | 1.0 | 41.1 | 13.1 | 12.1 | 46.3 | 64.1 | 81.2 | 100.0 | 89.9 | 100.0 | 88.0 | | 6 | 50 | 75 | 10.0 | 5.5 | 3.0 | 15.1 | 47.2 | 67.4 | 77.6 | 100.0 | 85.3 | 91.2 | 83.4 | | 6 | 70 | 75 | 0.1 | 450.0 | 48.6 | 15.1 | 27.7 | 84.5 | 82.1 | 100.0 | 85.2 | 96.3 | 84.3 | | 6 | 70 | 75 | 1.0 | 52.8 | 10.4 | 16.9 | 29.8 | 89.6 | 81.1 | 88.8 | 81.0 | 89.1 | 81.0 | | 6 | 70 | 75 | 10.0 | 6.5 | 2.7 | 21.2 | 32.5 | 94.6 | 77.6 | 72.5 | 70.8 | 79.8 | 73.5 | | 6 | 90 | 75 | 0.1 | 666.5 | 34.5 | 19.4 | 9.6 | 100.0 | 82.1 | 73.2 | 73.4 | 85.0 | 77.1 | | 6 | 90 | 75 | 1.0 | 71.9 | 8.3 | 21.7 | 10.5 | 100.0 | 81.1 | 59.0 | 63.2 | 77.7 | 72.0 | | 6 | l 90_ | 75 _ | _ 10.0 _ | _ 7.9 | _ 2.4_ | 27.2 _ | _ 12.4 _ | 100.0 | <u>77.7</u> _ | 42.8 | 36.4 _ | 69.2 _ | 60.7 | **Table 8:** Model parameters for the LP model $LP_{\Delta}(k, h_{pathway}^2, c_R, \mu)$ for disease traits. (cont.) | k | $h_{path}^2(\%)$ | $c_R(\%)$ | μ(%) | λ_{MZ} | λ_s | $h_{all}^{2}(\%)$ | $V_c(\%)$ | $h_{pop}^{2(ACE)}(\%)$ | $\pi_{phan}^{(ACE)}(\%)$ | $h_{pop}^{2(ADE)}(\%)$ | $\pi_{phan}^{(ADE)}(\%)$ | $h_{pop}^{2(PO)}(\%)$ | $\pi^{(PO)}_{phan}(\%)$ | |-----|------------------|-----------|-------------|----------------|-------------|-------------------|--------------|------------------------|--------------------------|------------------------|--------------------------|-----------------------|-------------------------| | 7 | 10 | 0 | 0.1 | 1.4 | 1.1 | 1.9 | 0.0 | 3.9 | 51.5 | 1.8 | 0.0 | 2.5 | 24.1 | | 7 | 10 | 0 | 1.0 | 1.2 | 1.1 | 2.1 | 0.0 | 3.5 | 40.1 | 2.1 | 0.0 | 2.6 | 17.2 | | 7 | 10 | 0 | 10.0 | 1.1 | 1.0 | 2.7 | 0.0 | 3.6 | 25.5 | 2.7 | 0.0 | 3.0 | 9.9 | | 7 | 30 | 0 | 0.1 | 5.8 | 1.9 | 5.7 | 0.0 | 24.1 | 76.5 | 5.7 | 0.3 | 11.8 | 52.2 | | 7 | 30 | 0 | 1.0 | 2.7 | 1.4 | 6.4 | 0.0 | 20.4 | 68.7 | 5.9 | 0.0 | 10.8 | 40.7 | | 7 | 30 | 0 | 10.0 | 1.5 | 1.2 | 8.1 | 0.0 | 17.2 | 52.8 | 7.8 | 0.0 | 10.9 | 25.8 | | 7 | 50 | 0 | 0.1 | 27.4 | 3.9 | 9.4 | 0.0 | 50.8 | 81.5 | 14.9 | 37.1 | 26.9 | 65.1 | | 7 | 50 | 0 | 1.0 | 7.0 | 2.1 | 10.6 | 0.0 | 46.7 | 77.3 | 11.6 | 8.7 | 23.3 | 54.5 | | 7 | 50 | 0 | 10.0 | 2.2 | 1.4 | 13.5 | 0.0 | 39.8 | 66.1 | 12.6 | 0.0 | 21.7 | 37.6 | | 7 | 70 | 0 | 0.1 | 106.1 | 8.7 | 13.2 | 0.0 | 78.5 | 83.2 | 29.4 | 55.1 | 45.8 | 71.1 | | 7 | 70 | 0 | 1.0 | 17.9 | 3.4 | 14.9 | 0.0 | 77.6 | 80.8 | 20.9 | 28.8 | 39.8 | 62.6 | | 7 | 70 | 0 | 10.0 | 3.5 | 1.6 | 18.9 | 0.0 | 71.6 | 73.6 | 17.2 | 0.0 | 35.3 | 46.5 | | 7 | 90 | 0 | 0.1 | 375.5 | 18.9 | 17.0 | 0.0 | 100.0 | 84.2 | 46.5 | 63.4 | 66.7 | 74.5 | | 7 | 90 | 0 | 1.0 | 45.8 | 5.5 | 19.1 | 0.0 | 100.0 | 82.9 | 33.2 | 42.3 | 59.4 | 67.8 | | 7 7 | 90
10 | 0
25 | 10.0
0.1 | 5.9 | 2.0 | 24.3 | 0.0 | 100.0
9.5 | 78.5
80.0 | 21.4
42.3 | 0.0 | 52.0 | 53.2 | | 7 | 10 | 25
25 | 1.0 | 7.1
3.0 | 4.8
2.4 | 1.9
2.1 | 17.2
14.6 | 8.3 | 74.2 | 36.5 | 95.5
94.2 | 31.3
27.1 | 94.0
92.2 | | 7 | 10 | 25
25 | 10.0 | 1.6 | 1.4 | 2.1 | 12.5 | 6.8 | 60.5 | 33.8 | 92.0 | 24.8 | 89.1 | | 7 | 30 | 25 | 0.1 | 22.8 | 7.1 | 5.7 | 18.1 | 31.4 | 82.0 | 45.5 | 92.0
87.6 | 40.8 | 86.1 | | 7 | 30 | 25 | 1.0 | 6.2 | 3.0 | 6.4 | 16.7 | 29.3 | 78.2 | 38.4 | 83.4 | 35.4 | 82.0 | | 7 | 30 | 25 | 10.0 | 2.1 | 1.6 | 8.1 | 14.3 | 25.0 | 67.6 | 34.9 | 76.8 | 31.6 | 74.4 | | 7 | 50 | 25 | 0.1 | 65.2 | 10.6 | 9.4 | 14.3 | 55.5 | 83.1 | 48.5 | 80.6 | 50.8 | 81.5 | | 7 | 50 | 25 | 1.0 | 12.7 | 3.8 | 10.6 | 14.4 | 54.4 | 80.5 | 39.5 | 73.1 | 44.4 | 76.1 | | 7 | 50 | 25 | 10.0 | 2.9 | 1.7 | 13.5 | 13.5 | 49.2 | 72.6 | 34.2 | 60.5 | 39.2 | 65.6 | | 7 | 70 | 25 | 0.1 | 170.1 | 15.6 | 13.2 | 9.1 | 81.2 | 83.7 | 51.4 | 74.3 | 61.3 | 78.5 | | 7 | 70 | 25 | 1.0 | 25.3 | 4.9 | 14.9 | 9.7 | 82.6 | 82.0 | 40.0 | 62.8 | 54.2 | 72.5 | | 7 | 70 |
25 | 10.0 | 4.2 | 1.9 | 18.9 | 10.1 | 79.6 | 76.3 | 31.5 | 40.0 | 47.5 | 60.2 | | 7 | 90 | 25 | 0.1 | 445.5 | 22.8 | 17.0 | 3.2 | 100.0 | 84.3 | 54.2 | 68.7 | 72.2 | 76.5 | | 7 | 90 | 25 | 1.0 | 52.3 | 6.2 | 19.1 | 3.6 | 100.0 | 83.1 | 40.2 | 52.4 | 64.6 | 70.4 | | 7 | 90 | 25 | 10.0 | 6.4 | 2.1 | 24.3 | 4.1 | 100.0 | 79.2 | 26.5 | 8.4 | 56.6 | 57.1 | | 7 | 10 | 50 | 0.1 | 39.1 | 27.4 | 1.9 | 41.3 | 11.3 | 83.3 | 100.0 | 98.3 | 77.7 | 97.6 | | 7 | 10 | 50 | 1.0 | 8.9 | 7.0 | 2.1 | 37.6 | 11.2 | 81.0 | 99.5 | 97.9 | 70.0 | 97.0 | | 7 | 10 | 50 | 10.0 | 2.4 | 2.2 | 2.7 | 32.5 | 10.2 | 73.6 | 87.1 | 96.9 | 61.5 | 95.6 | | 7 | 30 | 50 | 0.1 | 76.8 | 27.4 | 5.7 | 38.1 | 34.5 | 83.6 | 99.3 | 94.3 | 77.7 | 92.7 | | 7 | 30 | 50 | 1.0 | 14.2 | 7.0 | 6.4 | 36.9 | 34.9 | 81.7 | 87.6 | 92.7 | 70.0 | 90.9 | | 7 | 30 | 50 | 10.0 | 3.1 | 2.2 | 8.1 | 33.1 | 32.9 | 75.4 | 75.7 | 89.3 | 61.5 | 86.8 | | 7 | 50
50 | 50 | 0.1 | 145.5 | 27.4 | 9.4 | 29.3 | 58.6 | 84.0 | 87.3 | 89.2 | 77.7 | 87.9 | | 7 | 50 | 50
50 | 1.0
10.0 | 22.5
3.9 | 7.0
2.2 | 10.6
13.5 | 30.1
29.4 | 60.3
58.8 | 82.4
77.0 | 74.9
62.8 | 85.8
78.5 | 70.0
61.5 | 84.8
78.0 | | 7 | 70 | 50 | 0.1 | 271.8 | 27.4 | 13.3 | 18.5 | 83.5 | 84.2 | 74.9 | 82.3 | 77.7 | 83.0 | | 7 | 70 | 50 | 1.0 | 35.8 | 7.0 | 14.9 | 19.8 | 87.1 | 82.9 | 61.5 | 75.8 | 70.0 | 78.7 | | 7 | 70 | 50 | 10.0 | 5.1 | 2.2 | 18.9 | 21.2 | 87.8 | 78.5 | 48.3 | 60.8 | 61.5 | 69.2 | | 7 | 90 | 50 | 0.1 | 535.8 | 27.4 | 17.0 | 6.5 | 100.0 | 84.4 | 62.0 | 72.6 | 77.7 | 78.1 | | 7 | 90 | 50 | 1.0 | 60.4 | 7.0 | 19.1 | 7.1 | 100.0 | 83.4 | 47.4 | 59.6 | 70.0 | 72.7 | | 7 | 90 | 50 | 10.0 | 7.0 | 2.2 | 24.3 | 8.4 | 100.0 | 79.8 | 31.9 | 23.8 | 61.5 | 60.4 | | 7 | 10 | 75 | 0.1 | 170.1 | 124.3 | 1.9 | 68.1 | 12.2 | 84.6 | 100.0 | 99.0 | 100.0 | 98.6 | | 7 | 10 | 75 | 1.0 | 25.3 | 20.1 | 2.1 | 65.4 | 13.0 | 83.7 | 100.0 | 98.8 | 100.0 | 98.3 | | 7 | 10 | 75 | 10.0 | 4.2 | 3.7 | 2.7 | 60.3 | 13.7 | 80.3 | 100.0 | 98.3 | 100.0 | 97.6 | | 7 | 30 | 75 | 0.1 | 232.3 | 90.4 | 5.7 | 59.5 | 36.7 | 84.6 | 100.0 | 96.4 | 100.0 | 95.2 | | 7 | 30 | 75 | 1.0 | 31.8 | 16.0 | 6.4 | 59.6 | 39.1 | 83.7 | 100.0 | 95.7 | 100.0 | 94.3 | | 7 | 30 | 75 | 10.0 | 4.8 | 3.3 | 8.1 | 56.8 | 41.2 | 80.3 | 100.0 | 93.8 | 100.0 | 91.9 | | 7 | 50 | 75 | 0.1 | 318.8 | 65.2 | 9.4 | 44.9 | 61.2 | 84.6 | 100.0 | 92.7 | 100.0 | 91.2 | | 7 | 50 | 75 | 1.0 | 40.4 | 12.7 | 10.6 | 47.0 | 65.2 | 83.7 | 100.0 | 90.8 | 98.9 | 89.3 | | 7 | 50 | 75 | 10.0 | 5.5 | 2.9 | 13.5 | 47.8 | 68.7 | 80.3 | 98.3 | 86.3 | 88.4 | 84.7 | | 7 | 70 | 75 | 0.1 | 445.5 | 46.5 | 13.2 | 28.1 | 85.7 | 84.6 | 99.3 | 86.7 | 94.7 | 86.1 | | 7 | 70 | 75
75 | 1.0 | 52.3 | 10.0 | 14.9 | 30.4 | 91.1 | 83.7 | 84.9 | 82.5
72.0 | 87.0 | 82.9
75.5 | | 7 7 | 70
90 | 75
75 | 10.0
0.1 | 6.4
663.4 | 2.6
32.8 | 18.9
17.0 | 33.3
9.7 | 96.4
100.0 | 80.4
84.6 | 67.4
70.0 | 72.0
75.7 | 77.1
83.3 | 75.5
79.6 | | 7 | 90 | 75
75 | 1.0 | 71.5 | 7.9 | 19.1 | 10.8 | 100.0 | 83.6 | 54.8 | 65.1 | 75.6 | 79.6 | | 7 | 90 | 75 | 10.0 | 7.9 | 2.3 | 24.3 | 12.8 | 100.0 | 80.4 | 37.5 | 35.2 | 66.5 | 63.4 | | L | 1 | | | 1 | L _ = -3_ | I _ | | | L | 1 | L _ | J _ | 55.4 | **Table 8:** Model parameters for the LP model $LP_{\Delta}(k, h_{pathway}^2, c_R, \mu)$ for disease traits. (cont.) | k | $h_{path}^2(\%)$ | $c_R(\%)$ | μ(%) | λ_{MZ} | λ_s | $h_{all}^2(\%)$ | $V_c(\%)$ | $h_{pop}^{2(ACE)}(\%)$ | $\pi_{phan}^{(ACE)}(\%)$ | $h_{pop}^{2(ADE)}(\%)$ | $\pi_{phan}^{(ADE)}(\%)$ | $h_{pop}^{2(PO)}(\%)$ | $\pi_{phan}^{(PO)}(\%)$ | |-----|------------------|--|-------------|----------------|-------------|-----------------|--------------|------------------------|--------------------------|------------------------|--------------------------|-----------------------|-------------------------| | 8 | 10 | 0 | 0.1 | 1.4 | 1.1 | 1.7 | 0.0 | 3.6 | 53.3 | 1.6 | 0.0 | 2.2 | 25.0 | | 8 | 10 | 0 | 1.0 | 1.2 | 1.1 | 1.9 | 0.0 | 3.3 | 41.7 | 1.8 | 0.0 | 2.3 | 18.0 | | 8 | 10 | 0 | 10.0 | 1.1 | 1.0 | 2.4 | 0.0 | 3.4 | 27.0 | 2.4 | 0.0 | 2.7 | 10.5 | | 8 | 30 | 0 | 0.1 | 5.5 | 1.8 | 5.0 | 0.0 | 23.6 | 78.6 | 4.7 | 0.0 | 11.0 | 54.1 | | 8 | 30 | 0 | 1.0 | 2.5 | 1.4 | 5.7 | 0.0 | 19.6 | 70.9 | 5.1 | 0.0 | 9.9 | 42.5 | | 8 | 30 | 0 | 10.0 | 1.5 | 1.2 | 7.3 | 0.0 | 16.4 | 55.2 | 7.0 | 0.0 | 10.1 | 27.3 | | 8 | 50 | 0 | 0.1 | 26.1 | 3.7 | 8.4 | 0.0 | 50.7 | 83.5 | 13.1 | 35.9 | 25.6 | 67.3 | | 8 | 50 | 0 | 1.0 | 6.7 | 2.0 | 9.5 | 0.0 | 46.2 | 79.4 | 9.8 | 3.4 | 22.0 | 56.7 | | 8 | 50 | 0 | 10.0 | 2.1 | 1.3 | 12.2 | 0.0 | 38.9 | 68.6 | 11.0 | 0.0 | 20.3 | 39.7 | | 8 | 70 | 0 | 0.1 | 103.2 | 8.2 | 11.8 | 0.0 | 78.9 | 85.1 | 27.0 | 56.4 | 44.3 | 73.5 | | 8 | 70 | 0 | 1.0 | 17.4 | 3.2 | 13.3 | 0.0 | 77.8 | 82.9 | 18.2 | 26.9 | 38.1 | 65.0 | | 8 | 70 | 0 | 10.0 | 3.4 | 1.6 | 17.1 | 0.0 | 71.3 | 76.0 | 14.6 | 0.0 | 33.5 | 48.8 | | 8 | 90 | 0 | 0.1 | 371.5 | 18.0 | 15.1 | 0.0 | 100.0 | 86.0 | 43.7 | 65.4 | 65.3 | 76.8 | | 8 | 90 | 0 | 1.0 | 45.3 | 5.2 | 17.1 | 0.0 | 100.0 | 84.8 | 29.8 | 42.5 | 57.5 | 70.2 | | 8 | 90 | 0 | 10.0 | 5.8 | 1.9 | 22.0 | 0.0 | 100.0 | 80.7 | 17.6 | 0.0 | 49.8 | 55.8 | | 8 | 10 | 25 | 0.1 | 6.7 | 4.5 | 1.7 | 16.8 | 9.4 | 82.1 | 40.3 | 95.8 | 30.0 | 94.4 | | 8 | 10 | 25 | 1.0 | 2.9 | 2.3 | 1.9 | 14.1 | 8.1 | 76.4 | 34.4 | 94.5 | 25.6 | 92.6 | | 8 8 | 10
30 | 25
25 | 10.0
0.1 | 1.5
21.7 | 1.4
6.7 | 2.4
5.0 | 11.9
18.1 | 6.6
31.4 | 62.9
84.0 | 31.6
43.3 | 92.3
88.4 | 23.3
39.3 | 89.5
87.2 | | 8 | 30 | 25
25 | 1.0 | 5.9 | 2.9 | 5.0 | 16.6 | 29.0 | 80.3 | 43.3
36.1 | 84.2 | 33.7 | 87.2 | | 8 | 30 | 25 | 10.0 | 2.0 | 1.5 | 7.3 | 14.0 | 24.5 | 70.1 | 32.6 | 77.5 | 29.9 | 75.4 | | 8 | 50 | 25 | 0.1 | 62.9 | 10.0 | 8.4 | 14.4 | 55.8 | 85.0 | 46.1 | 81.9 | 49.4 | 83.1 | | 8 | 50 | 25 | 1.0 | 12.3 | 3.6 | 9.5 | 14.5 | 54.5 | 82.5 | 36.8 | 74.1 | 42.7 | 77.7 | | 8 | 50 | 25 | 10.0 | 2.8 | 1.7 | 12.2 | 13.5 | 48.8 | 74.9 | 31.5 | 61.1 | 37.3 | 67.2 | | 8 | 70 | 25 | 0.1 | 166.5 | 14.8 | 11.8 | 9.3 | 81.8 | 85.6 | 48.9 | 76.0 | 59.9 | 80.4 | | 8 | 70 | 25 | 1.0 | 24.7 | 4.6 | 13.3 | 9.8 | 83.2 | 84.0 | 37.0 | 64.0 | 52.4 | 74.6 | | 8 | 70 | 25 | 10.0 | 4.1 | 1.8 | 17.1 | 10.3 | 79.8 | 78.5 | 28.2 | 39.4 | 45.4 | 62.3 | | 8 | 90 | 25 | 0.1 | 441.7 | 21.7 | 15.1 | 3.3 | 100.0 | 86.2 | 51.5 | 70.6 | 70.8 | 78.6 | | 8 | 90 | 25 | 1.0 | 51.8 | 5.9 | 17.1 | 3.6 | 100.0 | 85.1 | 36.7 | 53.3 | 62.8 | 72.7 | | 8 | 90 | 25 | 10.0 | 6.4 | 2.0 | 22.0 | 4.3 | 100.0 | 81.4 | 22.5 | 2.1 | 54.4 | 59.5 | | 8 | 10 | 50 | 0.1 | 37.5 | 26.1 | 1.7 | 40.9 | 11.3 | 85.2 | 100.0 | 98.5 | 76.3 | 97.8 | | 8 | 10 | 50 | 1.0 | 8.6 | 6.7 | 1.9 | 36.9 | 11.2 | 83.0 | 96.7 | 98.0 | 68.2 | 97.2 | | 8 | 10 | 50 | 10.0 | 2.4 | 2.1 | 2.4 | 31.6 | 10.2 | 75.9 | 83.7 | 97.1 | 59.2 | 95.9 | | 8 | 30 | 50 | 0.1 | 74.4 | 26.1 | 5.0 | 38.3 | 34.8 | 85.5 | 97.1 | 94.8 | 76.3 | 93.4 | | 8 | 30 | 50 | 1.0 | 13.8 | 6.7 | 5.7 | 36.9 | 35.1 | 83.8 | 84.7 | 93.3 | 68.2 | 91.6 | | 8 | 30 | 50 | 10.0 | 3.0 | 2.1 | 7.3 | 32.8 | 32.9 | 77.7 | 72.3 | 89.8 | 59.2 | 87.6 | | 8 | 50 | 50 | 0.1 | 142.1 | 26.1 | 8.4 | 29.6 | 59.1 | 85.9 | 84.9 | 90.2 | 76.3 | 89.0 | | 8 | 50 | 50 | 1.0 | 22.0 | 6.7 | 9.5 | 30.4 | 60.8 | 84.4 | 71.9 | 86.8 | 68.2 | 86.1 | | 8 | 50 | 50 | 10.0 | 3.8 | 2.1 | 12.2 | 29.5 | 59.0 | 79.3 | 59.3 | 79.4 | 59.2 | 79.3 | | 8 8 | 70
70 | 50
50 | 0.1
1.0 | 267.8
35.3 | 26.1
6.7 | 11.8
13.3 | 18.7
20.1 | 84.3
88.0 | 86.1
84.9 | 72.3
58.3 | 83.7
77.1 | 76.3
68.2 | 84.6
80.5 | | 8 | 70 | 50
50 | 10.0 | 5.0 | 2.1 | 17.1 | 20.1 | 88.0
88.7 | 84.9 | 58.3
44.5 | 61.5 | 59.2 | 80.5
71.1 | | 8 | 90 | 50 | 0.1 | 532.4 | 26.1 | 15.1 | 6.6 | 100.0 | 86.3 | 59.3 | 74.5 | 76.3 | 80.2 | | 8 | 90 | 50 | 1.0 | 60.0 | 6.7 | 17.1 | 7.3 | 100.0 | 85.3 | 43.9 | 60.9 | 68.2 | 74.9 | | 8 | 90 | 50 | 10.0 | 7.0 | 2.1 | 22.0 | 8.7 | 100.0 | 82.0 | 27.7 | 20.4 | 59.2 | 62.8 | | 8 | 10 | 75 | 0.1 | 166.5 | 121.2 | 1.7 | 67.9 | 12.4 | 86.4 | 100.0 | 99.1 | 100.0 | 98.7 | | 8 | 10 | 75 | 1.0 | 24.7 | 19.6 | 1.9 | 65.0 | 13.2 | 85.6 | 100.0 | 98.9 | 100.0 | 98.4 | | 8 | 10 | 75 | 10.0 | 4.1 | 3.6 | 2.4 | 59.6 | 13.9 | 82.4 | 100.0 | 98.5 | 100.0 | 97.8 | | 8 | 30 | 75 | 0.1 | 228.4 | 87.7 | 5.0 | 59.9 | 37.2 | 86.4 | 100.0 | 96.8 | 100.0 | 95.7 | | 8 | 30 | 75 | 1.0 | 31.3 | 15.5 | 5.7 | 59.8 | 39.7 | 85.6 | 100.0 | 96.0 | 100.0 | 94.8 | | 8 | 30 | 75 | 10.0 | 4.7 | 3.2 | 7.3 | 56.8 | 41.8 | 82.4 | 100.0 | 94.2 | 98.3 | 92.5 | | 8 | 50 | 75 | 0.1 | 314.7 | 62.9 | 8.4 | 45.4 | 61.9 | 86.5 | 100.0 | 93.4 | 100.0 | 92.0 | | 8 | 50 | 75 | 1.0 | 39.9 | 12.3 | 9.5 | 47.5 | 66.1 | 85.6 | 100.0 | 91.6 | 97.2 | 90.2 | | 8 | 50 | 75 | 10.0 | 5.4 | 2.8 | 12.2 | 48.3 | 69.7 | 82.5 | 94.3 | 87.0 | 86.1 | 85.8 | | 8 | 70 | 75 | 0.1 | 441.7 | 44.7 | 11.8 | 28.5 | 86.7 | 86.4 | 96.8 | 87.9 | 93.4 | 87.4 | | 8 | 70 | 75 | 1.0 | 51.8 | 9.6 | 13.3 | 30.9 | 92.4 | 85.6 | 81.6 | 83.7 | 85.2 | 84.4 | | 8 | 70 | 75 | 10.0 | 6.4 | 2.5 | 17.1 | 33.9 | 97.9 | 82.5 | 63.2 | 72.9 | 74.7 | 77.1 | | 8 | 90 | 75 | 0.1 | 660.8 | 31.3 | 15.1 | 9.9 | 100.0 | 86.4 | 67.3 | 77.5 | 82.0 | 81.6 | | 8 | 90
90 | 75
75 | 1.0
10.0 | 71.2 | 7.6 | 17.1 | 11.0 | 100.0
100.0 | 85.6
82.6 | 51.2
33.1 | 66.6 | 73.7
64.2 | 76.8
65.7 | | 8 | 1 90_ | <u>_ </u> | L 10.0 - | _ 7.9 | 2.3_ | 22.0 _ | _ 13.2 _ | 100.0 | L <u>82.6</u> _ | l ^{33.1} . | 33.4 _ | 04.2 _ | 65.7 | **Table 8:** Model parameters for the LP model $LP_{\Delta}(k, h_{pathway}^2, c_R, \mu)$ for disease traits. (cont.) | k | $h_{path}^2(\%)$ | $c_R(\%)$ | μ(%) | λ_{MZ} | λ_s | $h_{all}^2(\%)$ | $V_c(\%)$ | $h_{pop}^{2(ACE)}(\%)$ | $\pi_{phan}^{(ACE)}(\%)$ | $h_{pop}^{2(ADE)}(\%)$ | $\pi_{phan}^{(ADE)}(\%)$ | $h_{pop}^{2(PO)}(\%)$ | $\pi_{phan}^{(PO)}(\%)$ | |---|------------------|-----------|------|----------------|-------------|-----------------|-----------
------------------------|--------------------------|------------------------|--------------------------|-----------------------|-------------------------| | 9 | 10 | 0 | 0.1 | 1.3 | 1.1 | 1.5 | 0.0 | 3.3 | 54.7 | 1.4 | 0.0 | 2.0 | 25.8 | | 9 | 10 | 0 | 1.0 | 1.2 | 1.1 | 1.7 | 0.0 | 3.0 | 43.1 | 1.7 | 0.0 | 2.1 | 18.6 | | 9 | 10 | 0 | 10.0 | 1.1 | 1.0 | 2.2 | 0.0 | 3.1 | 28.2 | 2.2 | 0.0 | 2.5 | 11.1 | | 9 | 30 | 0 | 0.1 | 5.2 | 1.7 | 4.5 | 0.0 | 23.1 | 80.3 | 3.9 | 0.0 | 10.3 | 55.8 | | 9 | 30 | 0 | 1.0 | 2.5 | 1.4 | 5.2 | 0.0 | 19.0 | 72.7 | 4.4 | 0.0 | 9.2 | 44.0 | | 9 | 30 | 0 | 10.0 | 1.4 | 1.2 | 6.7 | 0.0 | 15.7 | 57.2 | 6.3 | 0.0 | 9.4 | 28.6 | | 9 | 50 | 0 | 0.1 | 25.1 | 3.5 | 7.5 | 0.0 | 50.6 | 85.1 | 11.4 | 34.2 | 24.5 | 69.2 | | 9 | 50 | 0 | 1.0 | 6.5 | 2.0 | 8.6 | 0.0 | 45.8 | 81.2 | 8.3 | 0.0 | 20.8 | 58.6 | | 9 | 50 | 0 | 10.0 | 2.1 | 1.3 | 11.2 | 0.0 | 38.1 | 70.6 | 9.6 | 0.0 | 19.1 | 41.4 | | 9 | 70 | 0 | 0.1 | 100.7 | 7.8 | 10.6 | 0.0 | 79.3 | 86.6 | 24.9 | 57.4 | 43.0 | 75.3 | | 9 | 70 | 0 | 1.0 | 17.0 | 3.1 | 12.1 | 0.0 | 78.0 | 84.5 | 16.0 | 24.3 | 36.6 | 67.0 | | 9 | 70 | 0 | 10.0 | 3.3 | 1.6 | 15.7 | 0.0 | 70.9 | 77.9 | 12.4 | 0.0 | 31.9 | 50.9 | | 9 | 90 | 0 | 0.1 | 368.0 | 17.2 | 13.6 | 0.0 | 100.0 | 87.5 | 41.4 | 67.1 | 64.0 | 78.7 | | 9 | 90 | 0 | 1.0 | 44.9 | 5.1 | 15.5 | 0.0 | 100.0 | 86.4 | 26.9 | 42.2 | 55.9 | 72.2 | | 9 | 90 | 0 | 10.0 | 5.8 | 1.9 | 20.2 | 0.0 | 100.0 | 82.5 | 14.4 | 0.0 | 48.0 | 57.9 | | 9 | 10 | 25 | 0.1 | 6.4 | 4.3 | 1.5 | 16.4 | 9.3 | 83.7 | 38.6 | 96.1 | 28.8 | 94.7 | | 9 | 10 | 25 | 1.0 | 2.8 | 2.2 | 1.7 | 13.6 | 7.9 | 78.2 | 32.6 | 94.7 | 24.4 | 92.9 | | 9 | 10 | 25 | 10.0 | 1.5 | 1.4 | 2.2 | 11.4 | 6.4 | 65.0 | 29.8 | 92.5 | 22.0 | 89.8 | | 9 | 30 | 25 | 0.1 | 20.8 | 6.4 | 4.5 | 18.1 | 31.4 | 85.5 | 41.4 | 89.0 | 38.1 | 88.1 | | 9 | 30 | 25 | 1.0 | 5.7 | 2.8 | 5.2 | 16.5 | 28.8 | 82.0 | 34.1 | 84.8 | 32.3 | 84.0 | | 9 | 30 | 25 | 10.0 | 2.0 | 1.5 | 6.7 | 13.7 | 24.1 | 72.1 | 30.6 | 78.0 | 28.4 | 76.3 | | 9 | 50 | 25 | 0.1 | 61.1 | 9.5 | 7.5 | 14.5 | 56.0 | 86.5 | 44.1 | 82.9 | 48.1 | 84.3 | | 9 | 50 | 25 | 1.0 | 11.9 | 3.5 | 8.6 | 14.6 | 54.5 | 84.2 | 34.5 | 75.0 | 41.2 | 79.1 | | 9 | 50 | 25 | 10.0 | 2.8 | 1.6 | 11.2 | 13.4 | 48.5 | 76.9 | 29.2 | 61.6 | 35.6 | 68.5 | | 9 | 70 | 25 | 0.1 | 163.5 | 14.2 | 10.6 | 9.3 | 82.4 | 87.1 | 46.7 | 77.3 | 58.6 | 81.9 | | 9 | 70 | 25 | 1.0 | 24.3 | 4.5 | 12.1 | 10.0 | 83.8 | 85.6 | 34.3 | 64.8 | 50.8 | 76.2 | | 9 | 70 | 25 | 10.0 | 4.0 | 1.8 | 15.7 | 10.4 | 80.0 | 80.4 | 25.5 | 38.4 | 43.6 | 64.1 | | 9 | 90 | 25 | 0.1 | 438.4 | 20.8 | 13.6 | 3.3 | 100.0 | 87.6 | 49.1 | 72.2 | 69.5 | 80.4 | | 9 | 90 | 25 | 1.0 | 51.4 | 5.7 | 15.5 | 3.7 | 100.0 | 86.6 | 33.7 | 53.9 | 61.2 | 74.6 | | 9 | 90 | 25 | 10.0 | 6.3 | 2.0 | 20.2 | 4.4 | 100.0 | 83.1 | 19.1 | 0.0 | 52.5 | 61.6 | | 9 | 10 | 50 | 0.1 | 36.1 | 25.1 | 1.5 | 40.5 | 11.4 | 86.7 | 100.0 | 98.6 | 75.1 | 98.0 | | 9 | 10 | 50 | 1.0 | 8.3 | 6.5 | 1.7 | 36.3 | 11.3 | 84.7 | 94.2 | 98.2 | 66.6 | 97.4 | | 9 | 10 | 50 | 10.0 | 2.3 | 2.1 | 2.2 | 30.9 | 10.1 | 77.8 | 80.8 | 97.2 | 57.2 | 96.1 | | 9 | 30 | 50 | 0.1 | 72.3 | 25.1 | 4.5 | 38.4 | 35.0 | 87.0 | 95.1 | 95.2 | 75.1 | 93.9 | | 9 | 30 | 50 | 1.0 | 13.4 | 6.5 | 5.2 | 36.8 | 35.3 | 85.3 | 82.2 | 93.7 | 66.6 | 92.2 | | 9 | 30 | 50 | 10.0 | 2.9 | 2.1 | 6.7 | 32.5 | 32.9 | 79.6 | 69.4 | 90.3 | 57.2 | 88.3 | | 9 | 50 | 50 | 0.1 | 139.3 | 25.1 | 7.5 | 29.8 | 59.6 | 87.3 | 82.8 | 90.9 | 75.1 | 90.0 | | 9 | 50 | 50 | 1.0 | 21.6 | 6.5 | 8.6 | 30.6 | 61.2 | 85.9 | 69.2 | 87.5 | 66.6 | 87.1 | | 9 | 50 | 50 | 10.0 | 3.8 | 2.1 | 11.2 | 29.6 | 59.2 | 81.1 | 56.2 | 80.1 | 57.2 | 80.4 | | 9 | 70 | 50 | 0.1 | 264.3 | 25.1 | 10.6 | 18.9 | 85.1 | 87.5 | 70.1 | 84.9 | 75.1 | 85.9 | | 9 | 70 | 50 | 1.0 | 34.8 | 6.5 | 12.1 | 20.4 | 88.9 | 86.4 | 55.4 | 78.2 | 66.6 | 81.9 | | 9 | 70 | 50 | 10.0 | 5.0 | 2.1 | 15.7 | 21.9 | 89.3 | 82.4 | 41.2 | 61.9 | 57.2 | 72.6 | | 9 | 90 | 50 | 0.1 | 529.4 | 25.1 | 13.6 | 6.6 | 100.0 | 87.8 | 56.9 | 76.0 | 75.1 | 81.8 | | 9 | 90 | 50 | 1.0 | 59.6 | 6.5 | 15.5 | 7.4 | 100.0 | 86.9 | 40.8 | 61.9 | 66.6 | 76.7 | | 9 | 90 | 50 | 10.0 | 7.0 | 2.1 | 20.2 | 8.9 | 100.0 | 83.7 | 24.0 | 16.0 | 57.2 | 64.8 | | 9 | 10 | 75 | 0.1 | 163.5 | 118.5 | 1.5 | 67.8 | 12.5 | 87.9 | 100.0 | 99.2 | 100.0 | 98.8 | | 9 | 10 | 75 | 1.0 | 24.3 | 19.2 | 1.7 | 64.7 | 13.4 | 87.1 | 100.0 | 99.0 | 100.0 | 98.6 | | 9 | 10 | 75 | 10.0 | 4.0 | 3.5 | 2.2 | 59.0 | 14.1 | 84.1 | 100.0 | 98.6 | 100.0 | 98.0 | | 9 | 30 | 75 | 0.1 | 225.0 | 85.4 | 4.5 | 60.2 | 37.5 | 87.9 | 100.0 | 97.1 | 100.0 | 96.1 | | 9 | 30 | 75 | 1.0 | 30.8 | 15.1 | 5.2 | 60.1 | 40.2 | 87.1 | 100.0 | 96.4 | 100.0 | 95.2 | | 9 | 30 | 75 | 10.0 | 4.6 | 3.1 | 6.7 | 56.8 | 42.3 | 84.1 | 100.0 | 94.6 | 96.4 | 93.0 | | 9 | 50 | 75 | 0.1 | 311.2 | 61.1 | 7.5 | 45.8 | 62.5 | 87.9 | 100.0 | 94.0 | 100.0 | 92.8 | | 9 | 50 | 75 | 1.0 | 39.4 | 11.9 | 8.6 | 48.0 | 66.9 | 87.1 | 100.0 | 92.2 | 95.7 | 91.0 | | 9 | 50 | 75 | 10.0 | 5.4 | 2.8 | 11.2 | 48.7 | 70.6 | 84.1 | 90.9 | 87.7 | 84.1 | 86.7 | | 9 | 70 | 75 | 0.1 | 438.4 | 43.2 | 10.6 | 28.8 | 87.5 | 87.9 | 94.7 | 88.8 | 92.3 | 88.5 | | 9 | 70 | 75 | 1.0 | 51.4 | 9.3 | 12.1 | 31.3 | 93.6 | 87.1 | 78.7 | 84.7 | 83.7 | 85.6 | | 9 | 70 | 75 | 10.0 | 6.3 | 2.5 | 15.7 | 34.5 | 99.2 | 84.2 | 59.5 | 73.6 | 72.7 | 78.4 | | 9 | 90 | 75 | 0.1 | 658.4 | 30.2 | 13.6 | 10.0 | 100.0 | 87.9 | 64.9 | 79.0 | 80.7 | 83.1 | | 9 | 90 | 75 | 1.0 | 70.9 | 7.3 | 15.5 | 11.2 | 100.0 | 87.1 | 48.1 | 67.7 | 72.1 | 78.5 | | 9 | 90_ | 75_ | 10.0 | 7.8 | 2.2 | 20.2 | 13.5 | 100.0 | 84.2 | 29.2 | 31.0 | 62.2 | 67.6 | | | | | | | | | | | | | | | | **Table 8:** Model parameters for the LP model $LP_{\Delta}(k, h_{pathway}^2, c_R, \mu)$ for disease traits. (cont.) | k | $h_{path}^2(\%)$ | $c_R(\%)$ | μ(%) | λ_{MZ} | λ_s | $h^2_{all}(\%)$ | $V_c(\%)$ | $h_{pop}^{2(ACE)}(\%)$ | $\pi_{phan}^{(ACE)}(\%)$ | $h_{pop}^{2(ADE)}(\%)$ | $\pi_{phan}^{(ADE)}(\%)$ | $h_{pop}^{2(PO)}(\%)$ | $\pi^{(PO)}_{phan}(\%)$ | |----------|------------------|-----------|------------|----------------|-------------|-----------------|--------------|------------------------|--------------------------|------------------------|--------------------------|-----------------------|-------------------------| | 10 | 10 | 0 | 0.1 | 1.3 | 1.1 | 1.4 | 0.0 | 3.1 | 55.9 | 1.3 | 0.0 | 1.9 | 26.5 | | 10 | 10 | 0 | 1.0 | 1.2 | 1.1 | 1.6 | 0.0 | 2.8 | 44.2 | 1.5 | 0.0 | 2.0 | 19.2 | | 10 | 10 | 0 | 10.0 | 1.1 | 1.0 | 2.1 | 0.0 | 2.9 | 29.2 | 2.0 | 0.0 | 2.3 | 11.5 | | 10 | 30 | 0 | 0.1 | 5.0 | 1.7 | 4.1 | 0.0 | 22.6 | 81.7 | 3.2 | 0.0 | 9.7 | 57.1 | | 10 | 30 | 0 | 1.0 | 2.4 | 1.3 | 4.7 | 0.0 | 18.4 | 74.3 | 3.8 | 0.0 | 8.7 | 45.3 | | 10 | 30 | 0 | 10.0 | 1.4 | 1.1 | 6.2 | 0.0 | 15.1 | 58.9 | 5.7 | 0.0 | 8.8 | 29.7 | | 10 | 50 | 0 | 0.1 | 24.2 | 3.3 | 6.9 | 0.0 | 50.5 | 86.4 | 10.1 | 31.7 | 23.5 | 70.8 | | 10 | 50 | 0 | 1.0 | 6.3 | 1.9 | 7.9 | 0.0 | 45.3 | 82.6 | 7.1 | 0.0 | 19.8 | 60.2 | | 10 | 50 | 0 | 10.0 | 2.1 | 1.3 | 10.4 | 0.0 | 37.4 | 72.3 | 8.5 | 0.0 | 18.1 | 43.0 | | 10 | 70 | 0 | 0.1 | 100.0 | 7.4 | 9.7 | 0.0 | 79.6 | 87.9 | 23.0 | 58.0 | 41.9 | 76.9 | | 10 | 70 | 0 | 1.0 | 16.7 | 3.0 | 11.1 | 0.0 | 78.1 | 85.8 | 14.0 | 20.8 | 35.4 | 68.7 | | 10 | 70 | 0 | 10.0 | 3.3 | 1.5 | 14.5 | 0.0 | 70.6 | 79.5 | 10.6 | 0.0 | 30.6 | 52.6 | | 10 | 90 | 0 | 0.1 | 364.9 | 16.5 | 12.4 | 0.0 | 100.0 | 88.7 | 39.3 | 68.4 | 62.9 | 80.2 | | 10 | 90 | 0 | 1.0 | 44.5 | 4.9 | 14.2 | 0.0 | 100.0 | 87.6 | 24.3 | 41.5 | 54.5 | 73.9 | | 10 | 90 | 0 | 10.0 | 5.8 | 1.9 | 18.6 | 0.0 | 100.0 | 83.9 | 11.5 | 0.0 | 46.3 | 59.8 | | 10 | 10 | 25 | 0.1 | 6.1 | 4.1 | 1.4 | 16.0 | 9.2 | 85.0 | 37.1 | 96.3 | 27.8 | 95.0 | | 10 | 10 | 25 | 1.0 | 2.7 | 2.1 | 1.6 | 13.2 | 7.8 | 79.7 | 31.1 | 94.9 | 23.3 | 93.2 | | 10 | 10 | 25 | 10.0 | 1.5 | 1.4 | 2.1 | 10.9 | 6.2 | 66.7 | 28.3 | 92.7 | 21.0 | 90.1 | | 10 | 30 | 25 | 0.1 | 20.0 | 6.1 | 4.1 | 18.0 | 31.4 | 86.8 | 39.8 | 89.6 | 37.0 | 88.8 | | 10 | 30 | 25 | 1.0 | 5.5 | 2.7 | 4.7 | 16.3 | 28.6 | 83.4 | 32.3 | 85.3 | 31.1 | 84.8 | | 10 | 30 | 25 | 10.0 | 2.0 | 1.5 | 6.2 | 13.4 | 23.7 | 73.7 | 28.9 | 78.5 | 27.2 | 77.1 | | 10 | 50 | 25 | 0.1 | 59.4 | 9.1 | 6.9 | 14.6 | 56.2 | 87.8 | 42.3 | 83.8 | 46.9 | 85.4 | | 10 | 50 | 25 | 1.0 | 11.6 | 3.4 | 7.9 | 14.6 | 54.6 | 85.5 | 32.5 | 75.7 | 39.8 | 80.2 | | 10 | 50 | 25 | 10.0 | 2.7 | 1.6 | 10.4 | 13.4 | 48.1 | 78.5 | 27.2 | 62.0 | 34.2 | 69.7 | | 10 | 70 | 25 | 0.1 | 160.8 | 13.6 | 9.7 | 9.4 | 82.9 | 88.3 | 44.7 | 78.4 | 57.4 | 83.2 | | 10 | 70 | 25 | 1.0 | 23.9 | 4.3 | 11.1 | 10.1 | 84.2 | 86.9 | 32.0 | 65.5 | 49.4 | 77.6 | | 10 | 70 | 25 | 10.0 | 4.0 | 1.8 | 14.5 | 10.5 | 80.1 | 81.9 | 23.1 | 37.2 | 42.1 | 65.6 | | 10 | 90 | 25 | 0.1 | 435.5 | 20.0 | 12.4 | 3.3 | 100.0 | 88.8 | 47.0 | 73.5 | 68.4 | 81.8 | | 10 | 90 | 25 | 1.0 | 51.0 | 5.5 | 14.2 | 3.7 | 100.0 | 87.9 | 31.1 | 54.2 | 59.7 | 76.2 | | 10 | 90 | 25 | 10.0 | 6.3 | 2.0 | 18.6 | 4.4 | 100.0 | 84.5 | 16.0 | 0.0 | 50.8 | 63.3 | | 10
10 | 10
10 | 50
50 | 0.1
1.0 | 35.0
8.0 | 24.2
6.3 | 1.4
1.6 | 40.2
35.8 | 11.5
11.3 | 87.9
86.0 | 100.0
92.1 | 98.7
98.3 | 74.0
65.2 | 98.1
97.6 | | 10 | 10 | 50 | 10.0 | 2.3 | 2.1 | 2.1 | 30.2 | 10.1 | 79.4 | 78.3 | 97.4 | 55.5 | 96.3 | | 10 | 30 | 50 | 0.1 | 70.5 | 24.2 | 4.1 | 38.5 | 35.2 | 88.2 | 93.4 | 95.6 | 74.0 | 94.4 | | 10 | 30 | 50 | 1.0 | 13.1 | 6.3 | 4.1 | 36.8 | 35.2
35.5 | 86.6 | 80.0 | 94.1 | 65.2 | 92.7 | | 10 | 30 | 50 | 10.0 | 2.9 | 2.1 | 6.2 | 32.2 | 32.9 | 81.1 | 66.9 | 90.7 | 55.5 | 88.8 | | 10 | 50 | 50 | 0.1 | 136.7 | 24.2 | 6.9 | 30.0 | 60.0 | 88.5 | 81.0 | 91.5 | 74.0 | 90.7 | | 10 | 50 | 50 | 1.0 | 21.2 | 6.3 | 7.9 | 30.8 | 61.6 | 87.2 | 66.9 | 88.2 | 65.2 | 87.9 | | 10 | 50 | 50 | 10.0 | 3.7 | 2.1 | 10.4 | 29.7 | 59.4 | 82.6 | 53.6 | 80.7 | 55.5 | 81.4 | | 10 | 70 | 50 | 0.1 | 261.3 | 24.2 | 9.7 | 19.1 | 85.7 | 88.7 | 68.1 | 85.8 | 74.0 | 86.9 | | 10 | 70 | 50 | 1.0 | 34.4 | 6.3 | 11.1 | 20.6 | 89.6 | 87.7 | 52.9 | 79.1 | 65.2 | 83.0 | | 10 | 70 | 50 | 10.0 | 4.9 | 2.1 | 14.5 |
22.1 | 89.9 | 83.9 | 38.3 | 62.2 | 55.5 | 73.9 | | 10 | 90 | 50 | 0.1 | 526.8 | 24.2 | 12.4 | 6.7 | 100.0 | 88.9 | 54.8 | 77.3 | 74.0 | 83.2 | | 10 | 90 | 50 | 1.0 | 59.3 | 6.3 | 14.2 | 7.5 | 100.0 | 88.1 | 38.1 | 62.7 | 65.2 | 78.2 | | 10 | 90 | 50 | 10.0 | 6.9 | 2.1 | 18.6 | 9.1 | 100.0 | 85.1 | 20.8 | 10.5 | 55.5 | 66.4 | | 10 | 10 | 75 | 0.1 | 160.8 | 116.2 | 1.4 | 67.6 | 12.6 | 89.1 | 100.0 | 99.3 | 100.0 | 98.9 | | 10 | 10 | 75 | 1.0 | 23.9 | 18.8 | 1.6 | 64.4 | 13.5 | 88.3 | 100.0 | 99.1 | 100.0 | 98.7 | | 10 | 10 | 75 | 10.0 | 4.0 | 3.5 | 2.1 | 58.4 | 14.2 | 85.5 | 100.0 | 98.7 | 100.0 | 98.1 | | 10 | 30 | 75 | 0.1 | 222.0 | 83.5 | 4.1 | 60.4 | 37.9 | 89.1 | 100.0 | 97.3 | 100.0 | 96.4 | | 10 | 30 | 75 | 1.0 | 30.4 | 14.8 | 4.7 | 60.3 | 40.6 | 88.3 | 100.0 | 96.6 | 100.0 | 95.6 | | 10 | 30 | 75 | 10.0 | 4.6 | 3.1 | 6.2 | 56.7 | 42.8 | 85.5 | 100.0 | 94.8 | 94.7 | 93.4 | | 10 | 50 | 75 | 0.1 | 308.1 | 59.4 | 6.9 | 46.1 | 63.1 | 89.1 | 100.0 | 94.4 | 100.0 | 93.3 | | 10 | 50 | 75 | 1.0 | 39.0 | 11.6 | 7.9 | 48.4 | 67.6 | 88.3 | 100.0 | 92.7 | 94.4 | 91.6 | | 10 | 50 | 75 | 10.0 | 5.3 | 2.7 | 10.4 | 49.1 | 71.4 | 85.5 | 87.8 | 88.2 | 82.3 | 87.4 | | 10 | 70 | 75 | 0.1 | 435.5 | 41.9 | 9.7 | 29.1 | 88.3 | 89.1 | 92.8 | 89.6 | 91.3 | 89.4 | | 10 | 70 | 75 | 1.0 | 51.0 | 9.1 | 11.1 | 31.7 | 94.6 | 88.3 | 76.2 | 85.5 | 82.3 | 86.6 | | 10 | 70 | 75 | 10.0 | 6.3 | 2.4 | 14.5 | 35.0 | 100.0 | 85.5 | 56.3 | 74.2 | 70.9 | 79.6 | | 10 | 90 | 75 | 0.1 | 656.4 | 29.1 | 12.4 | 10.1 | 100.0 | 89.0 | 62.8 | 80.2 | 79.7 | 84.4 | | 10 | 90 | 75 | 1.0 | 70.7 | 7.1 | 14.2 | 11.4 | 100.0 | 88.3 | 45.4 | 68.6 | 70.7 | 79.9 | | 10 | 90 | 75 | 10.0 | 7.8 | 2.2 | 18.6 | 13.8 | 100.0 | 85.6 | 25.9 | 28.0 | 60.4 | 69.2 | | | | | | | | | | | | | | | | #### Table 9: For each of the 74 loci associated with Crohn's disease, we display the reported SNP-ID, nearest gene reported, Risk-Allele-Frequency (RAF) and Genetic-Relative-Risk (GRR). - $V_i(\%)$ is the fraction of variance explained (on the liability scale). - $h_{all}^2 \exp(A_{\Delta})$ is the fraction of the true narrow sense heritability explained under the additive A_{Δ} model - $h_{all}^2 \exp(LP_{\Delta})$ is the fraction of the true narrow sense heritability explained under the alternative LP_{Δ} (3) model. - Pathway denotes are random assignment of the known SNPs to the three notional pathways in the LP_{Δ} (3) model. Different pathway assignments did not affect the heritability results. **Table 9:** Assumed and actual variance explained by associated SNPs for Crohn's disease. (Source: Franke et al.¹¹). Epidemiological Parameters: $\mu = 0.2\%, h_{pop}^2 = 83\%, \lambda_{MZ} = 250, \lambda_s = 35$. | # | SNP-ID | Gene | RAF | GRR | $V_i(\%)$ | $\%h_{all}^2$ expl. (A_{Δ}) | $\%h_{all}^2$ expl. (LP_{Δ}) | Pathway | |----|------------|-----------|------|------|-----------|------------------------------------|-------------------------------------|---------| | 1 | rsG908 | NOD2 | 0.01 | 3.50 | 1.51 | 1.83 | 5.21 | 2 | | 2 | rsfs1003 | NOD2 | 0.01 | 3.50 | 1.51 | 1.83 | 5.21 | 2 | | 3 | rsR702 | NOD2 | 0.04 | 2.50 | 1.36 | 1.64 | 4.67 | 2 | | 4 | rs11209026 | IL23R | 0.93 | 2.66 | 0.47 | 0.57 | 1.63 | 2 | | 5 | rsIL23 | IL23R | 0.57 | 1.37 | 0.40 | 0.49 | 1.39 | 1 | | 6 | rs3792109 | ATG16L1 | 0.53 | 1.34 | 0.37 | 0.44 | 1.26 | 2 | | 7 | rs11742570 | PTGER4 | 0.61 | 1.33 | 0.32 | 0.38 | 1.10 | 2 | | 8 | rs11564258 | MUC19 | 0.03 | 1.74 | 0.23 | 0.27 | 0.78 | 1 | | 9 | rs12521868 | SLC22A4 | 0.42 | 1.23 | 0.19 | 0.23 | 0.65 | 3 | | 10 | rs10761659 | ZNF365 | 0.54 | 1.23 | 0.18 | 0.22 | 0.63 | 3 | | 11 | rs7714584 | IRGM | 0.09 | 1.37 | 0.18 | 0.22 | 0.63 | 1 | | 12 | rs4409764 | NKX2-3 | 0.49 | 1.22 | 0.17 | 0.21 | 0.60 | 2 | | 13 | rs3197999 | MST1 | 0.30 | 1.22 | 0.16 | 0.19 | 0.54 | 3 | | 14 | rs7517810 | TNFSF18 | 0.25 | 1.22 | 0.14 | 0.17 | 0.49 | 3 | | 15 | rs1893217 | PTPN2 | 0.15 | 1.25 | 0.13 | 0.16 | 0.46 | 2 | | 16 | rs3810936 | TNFSF15 | 0.68 | 1.21 | 0.13 | 0.16 | 0.44 | 3 | | 17 | rs4077515 | CARD9 | 0.41 | 1.18 | 0.12 | 0.14 | 0.41 | 1 | | 18 | rs2838519 | ICOSLG | 0.39 | 1.18 | 0.12 | 0.14 | 0.41 | 1 | | 19 | rs10758669 | JAK2 | 0.35 | 1.18 | 0.12 | 0.14 | 0.40 | 2 | | 20 | rs6556412 | IL12B | 0.33 | 1.18 | 0.11 | 0.14 | 0.39 | 1 | | 21 | rs1250550 | ZMIZ1 | 0.55 | | | | | 3 | | | | | | 1.19 | 0.11 | 0.13 | 0.38 | | | 22 | rs3091315 | CCL2 | 0.72 | 1.20 | 0.11 | 0.13 | 0.37 | 1 | | 23 | rs415890 | CCR6 | 0.52 | 1.17 | 0.11 | 0.13 | 0.37 | 1 | | 24 | rs7927997 | C11orf30 | 0.39 | 1.17 | 0.11 | 0.13 | 0.37 | 1 | | 25 | rs2058660 | IL18RAP | 0.23 | 1.19 | 0.10 | 0.13 | 0.36 | 1 | | 26 | rs4871611 | | 0.61 | 1.17 | 0.10 | 0.12 | 0.34 | 2 | | 27 | rs1799964 | MCCD1 | 0.21 | 1.19 | 0.10 | 0.12 | 0.34 | 3 | | 28 | rs2413583 | MAP3K7IP1 | 0.83 | 1.23 | 0.09 | 0.11 | 0.32 | 2 | | 29 | rs8005161 | GALC | 0.12 | 1.23 | 0.09 | 0.11 | 0.32 | 1 | | 30 | rs1736020 | | 0.58 | 1.16 | 0.09 | 0.11 | 0.32 | 3 | | 31 | rs3764147 | C13orf31 | 0.25 | 1.17 | 0.09 | 0.11 | 0.30 | 3 | | 32 | rs780093 | GCKR | 0.42 | 1.15 | 0.09 | 0.10 | 0.29 | 3 | | 33 | rs1819658 | UBE2D1 | 0.77 | 1.19 | 0.08 | 0.10 | 0.29 | 3 | | 34 | rs12242110 | CREM | 0.32 | 1.15 | 0.08 | 0.09 | 0.27 | 1 | | 35 | rs740495 | GPX4 | 0.25 | 1.16 | 0.08 | 0.09 | 0.27 | 1 | | 36 | rs6651252 | | 0.86 | 1.23 | 0.08 | 0.09 | 0.26 | 1 | | 37 | rs2872507 | GSMDL | 0.46 | 1.14 | 0.08 | 0.09 | 0.26 | 3 | | 38 | rs10181042 | C2orf74 | 0.42 | 1.14 | 0.08 | 0.09 | 0.26 | 1 | | 39 | rs6908425 | CDKAL1 | 0.78 | 1.17 | 0.07 | 0.08 | 0.23 | 1 | | 40 | rs2476601 | PTPN22 | 0.91 | 1.26 | 0.07 | 0.08 | 0.23 | 3 | | 41 | rs1456896 | IKZF1 | 0.69 | 1.14 | 0.06 | 0.07 | 0.21 | 1 | | 42 | rs11871801 | MLX | 0.76 | 1.15 | 0.06 | 0.07 | 0.20 | 3 | | 43 | rs6568421 | PRDM1 | 0.30 | 1.13 | 0.06 | 0.07 | 0.20 | 2 | | 44 | rs7554511 | Clorf106 | 0.73 | 1.14 | 0.06 | 0.07 | 0.20 | 1 | | 45 | rs7702331 | TMEM174 | 0.60 | 1.12 | 0.05 | 0.06 | 0.18 | 3 | | 46 | rs3180018 | SCAMP3 | 0.25 | 1.13 | 0.05 | 0.06 | 0.18 | 3 | | 47 | rs4656940 | CD244 | 0.80 | 1.15 | 0.05 | 0.06 | 0.17 | 1 | | 48 | rs4809330 | RTEL1 | 0.80 | 1.13 | 0.03 | 0.05 | 0.17 | 3 | | 49 | rs17293632 | SMAD3 | 0.71 | 1.12 | 0.04 | 0.05 | 0.15 | 3 | | ±3 | 1911799097 | DIMITIO | 0.25 | 1.12 | 0.04 | 0.05 | 0.13 | 3 | **Table 9:** Assumed and actual variance explained by associated SNPs for Crohn's disease. (Source: Franke et al.¹¹). Epidemiological Parameters: $\mu = 0.2\%, h_{pop}^2 = 83\%, \lambda_{MZ} = 250, \lambda_s = 35$. (cont.) | # | SNP-ID | Gene | RAF | GRR | $V_i(\%)$ | $\%h_{all}^2$ expl. (A_{Δ}) | $\%h_{all}^2$ expl. (LP_{Δ}) | Pathway | |------------|------------|---------|------|------|-----------|------------------------------------|-------------------------------------|---------| | 51 | rs10495903 | THADA | 0.13 | 1.14 | 0.04 | 0.05 | 0.13 | 3 | | 52 | rs2062305 | TNFSF11 | 0.35 | 1.10 | 0.04 | 0.05 | 0.13 | 3 | | 53 | rs7423615 | SP140 | 0.19 | 1.12 | 0.04 | 0.04 | 0.13 | 3 | | 54 | rs694739 | PRDX5 | 0.63 | 1.10 | 0.04 | 0.04 | 0.13 | 2 | | 55 | rs17309827 | C6orf85 | 0.64 | 1.10 | 0.04 | 0.04 | 0.12 | 1 | | 56 | rs3024505 | IL10 | 0.16 | 1.12 | 0.03 | 0.04 | 0.11 | 1 | | 57 | rs181359 | YDJC | 0.20 | 1.10 | 0.03 | 0.03 | 0.09 | 3 | | 58 | rs713875 | MTMR3 | 0.47 | 1.08 | 0.03 | 0.03 | 0.09 | 2 | | 59 | rs359457 | CPEB4 | 0.57 | 1.08 | 0.03 | 0.03 | 0.09 | 1 | | 60 | rs102275 | FADS1 | 0.34 | 1.08 | 0.02 | 0.03 | 0.08 | 1 | | 61 | rs13073817 | | 0.32 | 1.08 | 0.02 | 0.03 | 0.08 | 3 | | 62 | rs12722489 | IL2RA | 0.85 | 1.11 | 0.02 | 0.03 | 0.08 | 1 | | 63 | rs281379 | FUT2 | 0.49 | 1.07 | 0.02 | 0.02 | 0.07 | 1 | | 64 | rs151181 | APOB48R | 0.39 | 1.07 | 0.02 | 0.02 | 0.07 | 2 | | 65 | rs4902642 | ZFP36L1 | 0.58 | 1.07 | 0.02 | 0.02 | 0.07 | 3 | | 66 | rs12720356 | TYK2 | 0.08 | 1.12 | 0.02 | 0.02 | 0.07 | 3 | | 67 | rs1847472 | BACH2 | 0.66 | 1.07 | 0.02 | 0.02 | 0.06 | 1 | | 68 | rs6738825 | PLCL1 | 0.47 | 1.06 | 0.01 | 0.02 | 0.05 | 1 | | 69 | rs736289 | | 0.61 | 1.06 | 0.01 | 0.02 | 0.05 | 3 | | 70 | rs13428812 | DNMT3A | 0.33 | 1.06 | 0.01 | 0.02 | 0.05 | 1 | | 71 | rs2549794 | ERAP2 | 0.41 | 1.05 | 0.01 | 0.01 | 0.04 | 2 | | 72 | rs11167764 | NDFIP1 | 0.80 | 1.06 | 0.01 | 0.01 | 0.03 | 2 | | 73 | rs2797685 | VAMP3 | 0.19 | 1.05 | 0.01 | 0.01 | 0.02 | 3 | | 74 | rs1998598 | DENND1B | 0.30 | 1.04 | 0.01 | 0.01 | 0.02 | 1 | | Total (%): | | | | | 10.8 | 21.5 | 57.5 | |